본문 바로가기
AI/Deep Learning

딥러닝: 04. Logistic Classification(로지스틱 회귀)

by KIha_Jung 2019. 7. 30.

 

 

 

1.Logistic(regression) classification

Binary classification - True(1)/ False(0) 를 판단한다
logistic fnc)(시그모이드 함수) : H(X) = 1 / 1 + e^(-W^T*X)

시그모이드 함수를 사용했기 때문에 cost function 의 모양이 변한다.

cost function for logistic

Minimize cost - Gradient decent algorithm

In [11]:
import tensorflow as tf
import numpy as np
In [12]:
xy = np.loadtxt('./dataset/pass.csv', delimiter=',', dtype=np.float32)
In [13]:
x = xy[:,0:-1]
y = xy[:,[-1]]
In [14]:
print(x.shape, y.shape)
 
(6, 2) (6, 1)
In [15]:
X = tf.placeholder(tf.float32, shape=[None, 2])
Y = tf.placeholder(tf.float32, shape=[None, 1])

W = tf.Variable(tf.random_normal([2,1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')

hypothesis = tf.sigmoid(tf.matmul(X, W) + b)

# sigmoid fnc. 의 cost fnc.
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) *
                     tf.log(1-hypothesis))

train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)

# tf.cast : 부동소수점을 버린다.(1,0으로 표현한다)
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
# tf.equal을 통해 predicted와 Y를 비교한다.
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
In [16]:
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    
    for step in range(1001):
        cost_val, _ = sess.run([cost, train], feed_dict={X:x, Y:y})
        if step % 100 == 0:
            print(step, cost_val)
            
        h, c, a = sess.run([hypothesis, predicted, accuracy]
                           , feed_dict={X:x, Y:y})
        print("\nhypothesis:",h,'\npredicted:',c, '\naccuracy:',a)
 
0 1.9660257

hypothesis: [[0.25650516]
 [0.11951312]
 [0.13775477]
 [0.04179943]
 [0.02413322]
 [0.01980096]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.26602328]
 [0.12856945]
 [0.14799857]
 [0.04728255]
 [0.02797878]
 [0.02323315]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.27564895]
 [0.13809416]
 [0.15875396]
 [0.05337775]
 [0.03236889]
 [0.02720201]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.2853612 ]
 [0.14807808]
 [0.1700089 ]
 [0.06012776]
 [0.03736173]
 [0.03177408]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.29513744]
 [0.15850693]
 [0.18174523]
 [0.06757224]
 [0.04301649]
 [0.03701904]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.30495352]
 [0.16936034]
 [0.1939384 ]
 [0.07574609]
 [0.04939191]
 [0.04300839]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.31478405]
 [0.18061203]
 [0.20655733]
 [0.08467826]
 [0.05654448]
 [0.0498135 ]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.3246026 ]
 [0.19222957]
 [0.21956435]
 [0.09438908]
 [0.06452614]
 [0.0575032 ]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.3343817 ]
 [0.20417449]
 [0.2329154 ]
 [0.10488904]
 [0.07338184]
 [0.0661412 ]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.34409335]
 [0.21640274]
 [0.24656054]
 [0.11617684]
 [0.08314693]
 [0.07578258]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.3537094 ]
 [0.22886509]
 [0.26044458]
 [0.12823829]
 [0.09384435]
 [0.08647058]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.3632017 ]
 [0.24150783]
 [0.27450794]
 [0.14104491]
 [0.10548226]
 [0.09823301]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.37254268]
 [0.2542737 ]
 [0.2886877 ]
 [0.15455356]
 [0.11805151]
 [0.11107907]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.38170567]
 [0.2671033 ]
 [0.302919  ]
 [0.1687069 ]
 [0.13152467]
 [0.12499662]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.39066544]
 [0.279936  ]
 [0.3171363 ]
 [0.18343392]
 [0.14585468]
 [0.13995047]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.39939845]
 [0.29271105]
 [0.3312747 ]
 [0.19865161]
 [0.16097547]
 [0.15588155]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.4078834 ]
 [0.30536956]
 [0.34527168]
 [0.21426743]
 [0.17680311]
 [0.17270757]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.41610143]
 [0.31785527]
 [0.3590681 ]
 [0.2301816 ]
 [0.19323799]
 [0.19032511]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.42403638]
 [0.33011568]
 [0.37260956]
 [0.2462905 ]
 [0.21016818]
 [0.20861268]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.43167514]
 [0.34210318]
 [0.38584712]
 [0.26248968]
 [0.22747311]
 [0.22743508]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.4390074 ]
 [0.35377574]
 [0.3987383 ]
 [0.27867696]
 [0.24502786]
 [0.24664855]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.44602603]
 [0.3650974 ]
 [0.4112473 ]
 [0.29475525]
 [0.2627071 ]
 [0.26610586]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.45272672]
 [0.37603852]
 [0.4233452 ]
 [0.31063485]
 [0.28038937]
 [0.2856615 ]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.459108  ]
 [0.38657564]
 [0.43500996]
 [0.3262351 ]
 [0.29796025]
 [0.30517638]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.46517092]
 [0.39669162]
 [0.44622597]
 [0.34148586]
 [0.31531537]
 [0.32452166]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.47091874]
 [0.40637496]
 [0.45698372]
 [0.35632783]
 [0.33236188]
 [0.34358165]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.4763568 ]
 [0.4156194 ]
 [0.4672792 ]
 [0.3707128 ]
 [0.34902015]
 [0.36225566]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.48149207]
 [0.42442346]
 [0.47711313]
 [0.38460332]
 [0.36522394]
 [0.380459  ]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.48633292]
 [0.4327897 ]
 [0.48649043]
 [0.39797208]
 [0.38092026]
 [0.39812312]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.4908888 ]
 [0.4407242 ]
 [0.49541938]
 [0.41080076]
 [0.3960688 ]
 [0.415195  ]] 
predicted: [[0.]
 [0.]
 [0.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.5

hypothesis: [[0.49516997]
 [0.44823575]
 [0.5039111 ]
 [0.4230793 ]
 [0.4106408 ]
 [0.4316359 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.33333334

hypothesis: [[0.49918726]
 [0.45533556]
 [0.5119788 ]
 [0.43480465]
 [0.42461795]
 [0.4474203 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.33333334

hypothesis: [[0.50295186]
 [0.46203646]
 [0.51963735]
 [0.4459796 ]
 [0.4379911 ]
 [0.46253383]] 
predicted: [[1.]
 [0.]
 [1.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.16666667

hypothesis: [[0.5064751 ]
 [0.4683527 ]
 [0.5269028 ]
 [0.45661187]
 [0.45075867]
 [0.47697213]] 
predicted: [[1.]
 [0.]
 [1.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.16666667

hypothesis: [[0.50976837]
 [0.47429928]
 [0.5337918 ]
 [0.4667131 ]
 [0.46292555]
 [0.49073866]] 
predicted: [[1.]
 [0.]
 [1.]
 [0.]
 [0.]
 [0.]] 
accuracy: 0.16666667

hypothesis: [[0.512843  ]
 [0.47989187]
 [0.5403215 ]
 [0.47629791]
 [0.47450185]
 [0.50384355]] 
predicted: [[1.]
 [0.]
 [1.]
 [0.]
 [0.]
 [1.]] 
accuracy: 0.33333334

hypothesis: [[0.51571   ]
 [0.48514634]
 [0.54650927]
 [0.4853833 ]
 [0.48550174]
 [0.5163023 ]] 
predicted: [[1.]
 [0.]
 [1.]
 [0.]
 [0.]
 [1.]] 
accuracy: 0.33333334

hypothesis: [[0.5183801 ]
 [0.49007863]
 [0.552372  ]
 [0.49398777]
 [0.49594265]
 [0.52813405]] 
predicted: [[1.]
 [0.]
 [1.]
 [0.]
 [0.]
 [1.]] 
accuracy: 0.33333334

hypothesis: [[0.52086383]
 [0.49470443]
 [0.55792654]
 [0.5021309 ]
 [0.50584406]
 [0.5393612 ]] 
predicted: [[1.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.5231712 ]
 [0.49903923]
 [0.5631893 ]
 [0.50983304]
 [0.51522714]
 [0.5500078 ]] 
predicted: [[1.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.52531177]
 [0.5030981 ]
 [0.56817615]
 [0.5171146 ]
 [0.52411413]
 [0.56009936]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5272948 ]
 [0.5068955 ]
 [0.5729023 ]
 [0.52399594]
 [0.5325276 ]
 [0.569662  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.529129  ]
 [0.51044554]
 [0.57738227]
 [0.5304973 ]
 [0.5404904 ]
 [0.578722  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53082275]
 [0.51376164]
 [0.58163005]
 [0.5366383 ]
 [0.5480251 ]
 [0.5873055 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53238386]
 [0.51685655]
 [0.5856588 ]
 [0.54243815]
 [0.5551539 ]
 [0.59543806]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53381985]
 [0.51974255]
 [0.58948106]
 [0.5479152 ]
 [0.56189847]
 [0.6031445 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5351378 ]
 [0.5224312 ]
 [0.59310865]
 [0.5530871 ]
 [0.56827956]
 [0.6104491 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53634423]
 [0.52493346]
 [0.59655285]
 [0.5579709 ]
 [0.57431734]
 [0.6173746 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53744555]
 [0.52725977]
 [0.59982413]
 [0.5625825 ]
 [0.58003104]
 [0.62394315]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5384476 ]
 [0.5294199 ]
 [0.6029325 ]
 [0.56693727]
 [0.58543885]
 [0.63017565]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.539356  ]
 [0.5314232 ]
 [0.6058873 ]
 [0.57104975]
 [0.5905583 ]
 [0.63609207]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.540176  ]
 [0.5332784 ]
 [0.6086973 ]
 [0.57493365]
 [0.5954059 ]
 [0.64171094]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54091245]
 [0.53499377]
 [0.61137074]
 [0.5786019 ]
 [0.59999716]
 [0.6470502 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5415701 ]
 [0.536577  ]
 [0.61391544]
 [0.5820668 ]
 [0.6043468 ]
 [0.6521264 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54215336]
 [0.5380356 ]
 [0.61633873]
 [0.5853397 ]
 [0.6084689 ]
 [0.65695524]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54266626]
 [0.53937626]
 [0.6186474 ]
 [0.58843166]
 [0.6123765 ]
 [0.6615515 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5431127 ]
 [0.5406056 ]
 [0.6208478 ]
 [0.5913528 ]
 [0.61608183]
 [0.6659289 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5434963 ]
 [0.5417298 ]
 [0.6229462 ]
 [0.59411275]
 [0.6195966 ]
 [0.6701005 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5438206 ]
 [0.54275453]
 [0.624948  ]
 [0.5967206 ]
 [0.6229317 ]
 [0.67407846]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5440888 ]
 [0.5436852 ]
 [0.6268588 ]
 [0.59918475]
 [0.6260974 ]
 [0.67787415]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5443039]
 [0.544527 ]
 [0.6286834]
 [0.6015133]
 [0.6291032]
 [0.6814982]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5444688 ]
 [0.5452847 ]
 [0.6304265 ]
 [0.60371375]
 [0.6319583 ]
 [0.6849607 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5445863 ]
 [0.54596287]
 [0.6320928 ]
 [0.60579324]
 [0.6346711 ]
 [0.68827105]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54465884]
 [0.5465658 ]
 [0.63368607]
 [0.60775834]
 [0.63724965]
 [0.6914378 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5446889 ]
 [0.54709744]
 [0.6352105 ]
 [0.6096153 ]
 [0.6397014 ]
 [0.6944694 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5446787]
 [0.5475617]
 [0.6366697]
 [0.6113701]
 [0.6420334]
 [0.6973734]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5446304 ]
 [0.5479621 ]
 [0.63806707]
 [0.6130282 ]
 [0.6442523 ]
 [0.70015705]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5445461 ]
 [0.5483021 ]
 [0.63940597]
 [0.6145949 ]
 [0.64636433]
 [0.7028271 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54442775]
 [0.5485849 ]
 [0.6406894 ]
 [0.61607504]
 [0.6483753 ]
 [0.70539004]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.544277  ]
 [0.54881346]
 [0.6419202 ]
 [0.6174733 ]
 [0.6502907 ]
 [0.7078516 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5440957 ]
 [0.54899067]
 [0.6431012 ]
 [0.618794  ]
 [0.65211576]
 [0.7102175 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5438854 ]
 [0.54911923]
 [0.644235  ]
 [0.6200414 ]
 [0.6538553 ]
 [0.71249294]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5436477 ]
 [0.54920167]
 [0.645324  ]
 [0.6212191 ]
 [0.655514  ]
 [0.7146828 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.543384  ]
 [0.5492404 ]
 [0.64637035]
 [0.622331  ]
 [0.6570961 ]
 [0.7167918 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5430957 ]
 [0.5492377 ]
 [0.6473764 ]
 [0.6233804 ]
 [0.6586056 ]
 [0.71882415]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54278404]
 [0.5491958 ]
 [0.64834404]
 [0.6243707 ]
 [0.66004646]
 [0.72078407]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5424503 ]
 [0.54911673]
 [0.64927536]
 [0.6253048 ]
 [0.66142225]
 [0.72267526]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54209566]
 [0.54900235]
 [0.65017205]
 [0.6261858 ]
 [0.6627363 ]
 [0.72450143]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5417212 ]
 [0.54885453]
 [0.65103585]
 [0.62701625]
 [0.66399187]
 [0.72626597]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.541328  ]
 [0.548675  ]
 [0.65186846]
 [0.6277989 ]
 [0.6651921 ]
 [0.72797203]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54091704]
 [0.54846543]
 [0.65267134]
 [0.62853605]
 [0.6663397 ]
 [0.7296226 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54048926]
 [0.5482273 ]
 [0.65344596]
 [0.62923014]
 [0.6674375 ]
 [0.73122054]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.54004556]
 [0.54796225]
 [0.6541937 ]
 [0.6298833 ]
 [0.66848797]
 [0.7327686 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5395868 ]
 [0.54767156]
 [0.6549159 ]
 [0.63049763]
 [0.66949344]
 [0.7342692 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5391137 ]
 [0.5473566 ]
 [0.65561384]
 [0.6310751 ]
 [0.67045635]
 [0.73572475]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53862715]
 [0.54701865]
 [0.65628856]
 [0.63161755]
 [0.6713788 ]
 [0.73713756]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5381278 ]
 [0.5466589 ]
 [0.6569413 ]
 [0.6321268 ]
 [0.67226285]
 [0.7385096 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5376164 ]
 [0.5462784 ]
 [0.657573  ]
 [0.6326044 ]
 [0.67311037]
 [0.739843  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5370935 ]
 [0.5458784 ]
 [0.65818477]
 [0.63305205]
 [0.6739232 ]
 [0.7411397 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5365599 ]
 [0.5454598 ]
 [0.6587774 ]
 [0.63347113]
 [0.6747031 ]
 [0.74240124]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.536016  ]
 [0.5450237 ]
 [0.65935194]
 [0.6338632 ]
 [0.67545176]
 [0.7436296 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5354625 ]
 [0.54457086]
 [0.6599092 ]
 [0.63422954]
 [0.6761706 ]
 [0.7448262 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53489983]
 [0.5441023 ]
 [0.6604499 ]
 [0.63457143]
 [0.6768611 ]
 [0.74599254]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53432864]
 [0.5436188 ]
 [0.660975  ]
 [0.63489   ]
 [0.6775248 ]
 [0.74713016]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5337493 ]
 [0.54312116]
 [0.661485  ]
 [0.63518655]
 [0.67816293]
 [0.7482403 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5331623 ]
 [0.54261017]
 [0.6619808 ]
 [0.63546216]
 [0.67877674]
 [0.7493243 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53256804]
 [0.54208654]
 [0.6624629 ]
 [0.63571775]
 [0.67936736]
 [0.7503834 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53196704]
 [0.54155093]
 [0.662932  ]
 [0.63595444]
 [0.67993605]
 [0.75141865]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5313596 ]
 [0.541004  ]
 [0.6633886 ]
 [0.636173  ]
 [0.68048376]
 [0.7524312 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.53074616]
 [0.5404464 ]
 [0.66383344]
 [0.63637453]
 [0.68101156]
 [0.7534221 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5
100 0.62392217

hypothesis: [[0.53012705]
 [0.5398787 ]
 [0.6642669 ]
 [0.6365597 ]
 [0.6815204 ]
 [0.7543922 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.52950263]
 [0.5393015 ]
 [0.66468954]
 [0.6367295 ]
 [0.6820112 ]
 [0.75534254]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5288732 ]
 [0.5387153 ]
 [0.6651018 ]
 [0.63688445]
 [0.6824848 ]
 [0.7562741 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5282391]
 [0.5381206]
 [0.6655043]
 [0.6370254]
 [0.6829421]
 [0.7571875]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5276006 ]
 [0.53751796]
 [0.66589725]
 [0.63715315]
 [0.6833839 ]
 [0.7580836 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.526958  ]
 [0.53690773]
 [0.6662813 ]
 [0.6372682 ]
 [0.68381083]
 [0.7589632 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5263115 ]
 [0.53629047]
 [0.6666566 ]
 [0.63737124]
 [0.68422353]
 [0.759827  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.52566147]
 [0.53566647]
 [0.6670237 ]
 [0.63746285]
 [0.68462294]
 [0.76067567]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.52500814]
 [0.53503627]
 [0.66738296]
 [0.63754356]
 [0.68500954]
 [0.7615098 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.52435166]
 [0.53440017]
 [0.6677346 ]
 [0.637614  ]
 [0.68538386]
 [0.76233006]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5236923 ]
 [0.5337585 ]
 [0.668079  ]
 [0.6376747 ]
 [0.68574667]
 [0.7631369 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5230303 ]
 [0.5331117 ]
 [0.66841656]
 [0.637726  ]
 [0.6860984 ]
 [0.7639311 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5223658 ]
 [0.53246003]
 [0.66874754]
 [0.6377685 ]
 [0.68643963]
 [0.764713  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.521699  ]
 [0.53180385]
 [0.66907215]
 [0.63780254]
 [0.68677074]
 [0.7654832 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5210301 ]
 [0.5311434 ]
 [0.6693907 ]
 [0.6378286 ]
 [0.68709236]
 [0.76624215]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.52035934]
 [0.5304791 ]
 [0.6697033 ]
 [0.6378471 ]
 [0.6874048 ]
 [0.7669901 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.51968676]
 [0.5298111 ]
 [0.67001045]
 [0.6378584 ]
 [0.6877086 ]
 [0.7677279 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5190126 ]
 [0.5291396 ]
 [0.6703123 ]
 [0.6378628 ]
 [0.6880042 ]
 [0.76845556]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.51833695]
 [0.528465  ]
 [0.67060894]
 [0.6378608 ]
 [0.6882918 ]
 [0.7691737 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.51766   ]
 [0.52778745]
 [0.6709007 ]
 [0.63785255]
 [0.68857193]
 [0.7698825 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5169819 ]
 [0.5271072 ]
 [0.6711877 ]
 [0.6378385 ]
 [0.6888449 ]
 [0.77058244]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.51630276]
 [0.52642447]
 [0.6714702 ]
 [0.6378189 ]
 [0.68911105]
 [0.77127385]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.51562274]
 [0.5257395 ]
 [0.67174846]
 [0.637794  ]
 [0.68937075]
 [0.771957  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5149419 ]
 [0.52505237]
 [0.67202246]
 [0.63776416]
 [0.6896242 ]
 [0.77263224]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5142603 ]
 [0.52436334]
 [0.6722925 ]
 [0.6377296 ]
 [0.6898717 ]
 [0.7732998 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5135782 ]
 [0.5236726 ]
 [0.67255867]
 [0.6376905 ]
 [0.69011366]
 [0.77396   ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5128956 ]
 [0.5229803 ]
 [0.6728211 ]
 [0.63764715]
 [0.6903502 ]
 [0.77461314]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.51221263]
 [0.5222866 ]
 [0.6730801 ]
 [0.63759977]
 [0.6905816 ]
 [0.7752594 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5115293 ]
 [0.52159166]
 [0.6733356 ]
 [0.6375486 ]
 [0.6908082 ]
 [0.77589893]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5108459 ]
 [0.5208956 ]
 [0.67358786]
 [0.63749385]
 [0.69103   ]
 [0.7765321 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5101623 ]
 [0.5201986 ]
 [0.67383695]
 [0.6374357 ]
 [0.6912475 ]
 [0.77715915]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5094787]
 [0.5195008]
 [0.674083 ]
 [0.6373742]
 [0.6914607]
 [0.7777802]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.50879514]
 [0.5188023 ]
 [0.67432606]
 [0.6373098 ]
 [0.69166994]
 [0.77839535]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.50811166]
 [0.5181032 ]
 [0.6745664 ]
 [0.63724244]
 [0.6918753 ]
 [0.779005  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5074284 ]
 [0.5174036 ]
 [0.674804  ]
 [0.63717234]
 [0.692077  ]
 [0.77960926]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5067454 ]
 [0.51670367]
 [0.67503893]
 [0.63709974]
 [0.69227517]
 [0.7802082 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.50606275]
 [0.5160035 ]
 [0.67527133]
 [0.63702464]
 [0.69247   ]
 [0.780802  ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5053804 ]
 [0.5153032 ]
 [0.67550135]
 [0.6369473 ]
 [0.69266164]
 [0.7813909 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5046985 ]
 [0.51460284]
 [0.675729  ]
 [0.63686776]
 [0.69285035]
 [0.78197503]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5040171 ]
 [0.5139025 ]
 [0.67595434]
 [0.6367863 ]
 [0.6930361 ]
 [0.78255445]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5033363 ]
 [0.51320225]
 [0.6761775 ]
 [0.63670284]
 [0.6932191 ]
 [0.7831294 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.50265604]
 [0.51250225]
 [0.6763986 ]
 [0.6366176 ]
 [0.6933995 ]
 [0.7836999 ]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5019764 ]
 [0.5118025 ]
 [0.6766176 ]
 [0.6365307 ]
 [0.69357735]
 [0.78426623]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.5012975 ]
 [0.51110315]
 [0.6768347 ]
 [0.63644224]
 [0.6937528 ]
 [0.78482836]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.50061923]
 [0.5104042 ]
 [0.6770499 ]
 [0.6363523 ]
 [0.6939261 ]
 [0.78538644]] 
predicted: [[1.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.5

hypothesis: [[0.4999418]
 [0.5097058]
 [0.6772631]
 [0.636261 ]
 [0.6940971]
 [0.7859406]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49926513]
 [0.50900793]
 [0.67747456]
 [0.63616836]
 [0.69426614]
 [0.7864909 ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.4985893 ]
 [0.5083107 ]
 [0.6776843 ]
 [0.63607454]
 [0.6944331 ]
 [0.78703743]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49791437]
 [0.5076141 ]
 [0.6778924 ]
 [0.63597953]
 [0.69459826]
 [0.78758043]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49724036]
 [0.50691825]
 [0.6780988 ]
 [0.63588357]
 [0.6947616 ]
 [0.78811973]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49656728]
 [0.5062232 ]
 [0.67830366]
 [0.6357866 ]
 [0.6949231 ]
 [0.7886557 ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49589515]
 [0.505529  ]
 [0.678507  ]
 [0.6356887 ]
 [0.69508314]
 [0.7891882 ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49522403]
 [0.50483567]
 [0.6787088 ]
 [0.63559   ]
 [0.6952416 ]
 [0.7897175 ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49455395]
 [0.50414324]
 [0.6789092 ]
 [0.63549054]
 [0.69539845]
 [0.79024345]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.4938849 ]
 [0.5034518 ]
 [0.67910814]
 [0.6353904 ]
 [0.695554  ]
 [0.79076624]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49321693]
 [0.5027614 ]
 [0.67930573]
 [0.63528955]
 [0.69570816]
 [0.791286  ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49255008]
 [0.5020721 ]
 [0.679502  ]
 [0.6351881 ]
 [0.695861  ]
 [0.79180264]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49188432]
 [0.50138384]
 [0.679697  ]
 [0.6350862 ]
 [0.6960126 ]
 [0.7923163 ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.4912197 ]
 [0.5006967 ]
 [0.67989063]
 [0.6349837 ]
 [0.6961631 ]
 [0.7928272 ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.49055624]
 [0.5000107 ]
 [0.68008316]
 [0.6348809 ]
 [0.6963124 ]
 [0.7933351 ]] 
predicted: [[0.]
 [1.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.6666667

hypothesis: [[0.48989397]
 [0.499326  ]
 [0.6802744 ]
 [0.63477755]
 [0.6964607 ]
 [0.7938403 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48923293]
 [0.49864244]
 [0.68046457]
 [0.63467395]
 [0.696608  ]
 [0.79434264]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48857304]
 [0.49796015]
 [0.6806535 ]
 [0.63457006]
 [0.6967543 ]
 [0.7948424 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4879144 ]
 [0.49727914]
 [0.6808414 ]
 [0.6344659 ]
 [0.69689965]
 [0.7953395 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48725703]
 [0.4965994 ]
 [0.6810281 ]
 [0.6343614 ]
 [0.69704413]
 [0.795834  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4866009 ]
 [0.49592102]
 [0.68121386]
 [0.6342568 ]
 [0.6971878 ]
 [0.7963259 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48594606]
 [0.495244  ]
 [0.6813985 ]
 [0.634152  ]
 [0.6973306 ]
 [0.79681534]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4852925 ]
 [0.49456832]
 [0.6815822 ]
 [0.63404703]
 [0.69747263]
 [0.7973023 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4846402 ]
 [0.49389407]
 [0.68176484]
 [0.63394207]
 [0.697614  ]
 [0.7977868 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48398924]
 [0.49322122]
 [0.6819465 ]
 [0.633837  ]
 [0.69775456]
 [0.7982689 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48333958]
 [0.4925498 ]
 [0.6821273 ]
 [0.63373184]
 [0.6978946 ]
 [0.7987487 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48269126]
 [0.49187982]
 [0.6823071 ]
 [0.6336267 ]
 [0.69803387]
 [0.79922616]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48204428]
 [0.49121132]
 [0.682486  ]
 [0.6335216 ]
 [0.69817257]
 [0.7997013 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48139864]
 [0.4905443 ]
 [0.68266404]
 [0.63341653]
 [0.6983107 ]
 [0.80017424]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48075435]
 [0.48987877]
 [0.6828411 ]
 [0.6333115 ]
 [0.6984483 ]
 [0.8006449 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.48011145]
 [0.48921475]
 [0.6830174 ]
 [0.63320655]
 [0.6985854 ]
 [0.80111337]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4794699 ]
 [0.48855227]
 [0.6831928 ]
 [0.6331017 ]
 [0.69872195]
 [0.8015797 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4788297 ]
 [0.48789132]
 [0.6833674 ]
 [0.63299704]
 [0.698858  ]
 [0.8020439 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47819093]
 [0.48723194]
 [0.6835411 ]
 [0.6328925 ]
 [0.6989936 ]
 [0.80250597]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47755352]
 [0.48657408]
 [0.6837141 ]
 [0.63278806]
 [0.69912887]
 [0.802966  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4769175 ]
 [0.4859178 ]
 [0.6838863 ]
 [0.6326838 ]
 [0.6992636 ]
 [0.80342394]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4762829 ]
 [0.48526308]
 [0.68405765]
 [0.63257974]
 [0.6993979 ]
 [0.8038798 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47564965]
 [0.48461   ]
 [0.68422824]
 [0.6324759 ]
 [0.699532  ]
 [0.80433375]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47501785]
 [0.48395845]
 [0.6843981 ]
 [0.63237226]
 [0.69966555]
 [0.80478567]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47438747]
 [0.48330852]
 [0.6845672 ]
 [0.6322689 ]
 [0.69979876]
 [0.8052356 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47375846]
 [0.48266023]
 [0.6847356 ]
 [0.6321658 ]
 [0.6999317 ]
 [0.80568355]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47313088]
 [0.4820135 ]
 [0.68490326]
 [0.63206285]
 [0.70006424]
 [0.8061297 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47250473]
 [0.48136842]
 [0.6850702 ]
 [0.6319603 ]
 [0.70019656]
 [0.8065738 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47188002]
 [0.48072496]
 [0.68523645]
 [0.63185793]
 [0.7003285 ]
 [0.80701613]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47125673]
 [0.48008314]
 [0.685402  ]
 [0.63175595]
 [0.70046026]
 [0.80745655]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.47063485]
 [0.47944295]
 [0.68556684]
 [0.6316542 ]
 [0.70059174]
 [0.80789506]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4700144 ]
 [0.4788044 ]
 [0.685731  ]
 [0.63155276]
 [0.70072293]
 [0.8083318 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46939537]
 [0.4781675 ]
 [0.6858945 ]
 [0.63145167]
 [0.7008538 ]
 [0.80876666]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46877778]
 [0.47753224]
 [0.6860573 ]
 [0.6313509 ]
 [0.70098454]
 [0.80919975]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46816164]
 [0.47689864]
 [0.6862196 ]
 [0.6312505 ]
 [0.701115  ]
 [0.80963117]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4675469 ]
 [0.47626665]
 [0.68638104]
 [0.63115036]
 [0.70124525]
 [0.8100606 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46693364]
 [0.47563636]
 [0.6865419 ]
 [0.6310506 ]
 [0.70137537]
 [0.81048846]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46632177]
 [0.4750077 ]
 [0.68670225]
 [0.6309512 ]
 [0.70150524]
 [0.8109146 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46571136]
 [0.47438073]
 [0.6868618 ]
 [0.6308522 ]
 [0.7016349 ]
 [0.8113389 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4651024 ]
 [0.47375542]
 [0.68702084]
 [0.6307535 ]
 [0.7017644 ]
 [0.8117615 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
200 0.57547235

hypothesis: [[0.46449482]
 [0.47313175]
 [0.6871792 ]
 [0.6306553 ]
 [0.7018937 ]
 [0.8121825 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46388873]
 [0.47250977]
 [0.68733704]
 [0.63055736]
 [0.70202285]
 [0.8126017 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46328408]
 [0.47188944]
 [0.68749416]
 [0.63045985]
 [0.70215183]
 [0.8130192 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46268082]
 [0.47127074]
 [0.6876508 ]
 [0.63036275]
 [0.7022806 ]
 [0.8134352 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.462079  ]
 [0.47065374]
 [0.6878067 ]
 [0.63026595]
 [0.7024092 ]
 [0.8138494 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46147862]
 [0.47003838]
 [0.6879621 ]
 [0.6301696 ]
 [0.7025377 ]
 [0.81426203]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46087965]
 [0.4694247 ]
 [0.6881169 ]
 [0.6300736 ]
 [0.7026661 ]
 [0.814673  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.46028215]
 [0.4688127 ]
 [0.68827116]
 [0.62997806]
 [0.7027943 ]
 [0.81508243]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45968607]
 [0.46820235]
 [0.6884248 ]
 [0.62988293]
 [0.7029224 ]
 [0.8154902 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45909142]
 [0.46759364]
 [0.6885779 ]
 [0.6297882 ]
 [0.70305043]
 [0.81589633]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45849818]
 [0.46698663]
 [0.68873036]
 [0.62969387]
 [0.7031783 ]
 [0.8163009 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45790637]
 [0.46638122]
 [0.6888823 ]
 [0.6296    ]
 [0.703306  ]
 [0.81670403]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45731598]
 [0.46577755]
 [0.6890337 ]
 [0.62950647]
 [0.70343363]
 [0.8171055 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45672703]
 [0.46517545]
 [0.6891845 ]
 [0.62941337]
 [0.70356107]
 [0.81750536]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45613948]
 [0.46457505]
 [0.68933475]
 [0.6293207 ]
 [0.70368844]
 [0.81790376]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45555335]
 [0.4639763 ]
 [0.68948454]
 [0.6292284 ]
 [0.70381576]
 [0.8183006 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45496863]
 [0.4633792 ]
 [0.68963367]
 [0.6291366 ]
 [0.70394295]
 [0.8186959 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45438537]
 [0.46278378]
 [0.6897823 ]
 [0.62904525]
 [0.70407   ]
 [0.8190897 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45380348]
 [0.46218997]
 [0.6899304 ]
 [0.6289543 ]
 [0.704197  ]
 [0.8194819 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45322302]
 [0.4615978 ]
 [0.69007796]
 [0.6288637 ]
 [0.7043239 ]
 [0.8198728 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45264393]
 [0.4610073 ]
 [0.690225  ]
 [0.62877357]
 [0.7044506 ]
 [0.8202621 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4520663 ]
 [0.46041846]
 [0.6903715 ]
 [0.62868387]
 [0.70457745]
 [0.8206499 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45149004]
 [0.45983124]
 [0.6905175 ]
 [0.62859464]
 [0.70470405]
 [0.8210363 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4509152 ]
 [0.45924562]
 [0.6906629 ]
 [0.62850577]
 [0.7048306 ]
 [0.8214212 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.45034173]
 [0.45866168]
 [0.6908078 ]
 [0.6284174 ]
 [0.704957  ]
 [0.8218046 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44976968]
 [0.45807934]
 [0.69095224]
 [0.62832934]
 [0.7050834 ]
 [0.8221866 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44919902]
 [0.45749864]
 [0.69109607]
 [0.6282418 ]
 [0.7052096 ]
 [0.82256716]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44862974]
 [0.45691955]
 [0.6912395 ]
 [0.62815464]
 [0.7053358 ]
 [0.82294625]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44806185]
 [0.45634207]
 [0.69138235]
 [0.62806785]
 [0.7054619 ]
 [0.82332385]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44749534]
 [0.45576623]
 [0.6915247 ]
 [0.6279816 ]
 [0.70558786]
 [0.8237002 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44693023]
 [0.455192  ]
 [0.69166654]
 [0.6278957 ]
 [0.70571387]
 [0.824075  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4463665 ]
 [0.45461938]
 [0.69180787]
 [0.6278103 ]
 [0.70583975]
 [0.82444847]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44580412]
 [0.45404837]
 [0.6919487 ]
 [0.6277253 ]
 [0.70596546]
 [0.8248205 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44524315]
 [0.453479  ]
 [0.6920891 ]
 [0.6276407 ]
 [0.7060912 ]
 [0.8251912 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44468352]
 [0.45291117]
 [0.69222885]
 [0.62755656]
 [0.7062169 ]
 [0.82556045]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4441253 ]
 [0.45234495]
 [0.69236827]
 [0.6274729 ]
 [0.70634246]
 [0.8259284 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4435684 ]
 [0.45178035]
 [0.6925071 ]
 [0.62738955]
 [0.706468  ]
 [0.8262949 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44301286]
 [0.45121732]
 [0.69264543]
 [0.62730664]
 [0.7065934 ]
 [0.82666004]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4424587 ]
 [0.45065588]
 [0.69278324]
 [0.62722415]
 [0.7067187 ]
 [0.82702386]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4419059 ]
 [0.450096  ]
 [0.6929206 ]
 [0.6271421 ]
 [0.706844  ]
 [0.82738626]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44135442]
 [0.44953772]
 [0.69305754]
 [0.6270605 ]
 [0.7069692 ]
 [0.82774746]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44080433]
 [0.44898105]
 [0.6931939 ]
 [0.62697923]
 [0.7070943 ]
 [0.82810724]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.44025558]
 [0.44842592]
 [0.6933298 ]
 [0.62689847]
 [0.7072194 ]
 [0.8284657 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43970817]
 [0.44787234]
 [0.6934653 ]
 [0.62681806]
 [0.7073444 ]
 [0.82882285]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43916208]
 [0.44732034]
 [0.69360024]
 [0.62673813]
 [0.70746934]
 [0.82917863]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43861735]
 [0.4467699 ]
 [0.69373477]
 [0.62665856]
 [0.70759416]
 [0.8295331 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43807396]
 [0.44622105]
 [0.69386876]
 [0.6265795 ]
 [0.70771897]
 [0.8298863 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43753192]
 [0.4456737 ]
 [0.6940023 ]
 [0.6265008 ]
 [0.7078437 ]
 [0.8302382 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43699116]
 [0.44512793]
 [0.6941353 ]
 [0.62642246]
 [0.70796835]
 [0.8305889 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43645176]
 [0.4445837 ]
 [0.6942679 ]
 [0.6263446 ]
 [0.7080929 ]
 [0.83093816]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43591368]
 [0.444041  ]
 [0.6944001 ]
 [0.6262671 ]
 [0.7082175 ]
 [0.8312862 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4353769 ]
 [0.4434999 ]
 [0.6945317 ]
 [0.62619007]
 [0.70834196]
 [0.8316329 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43484145]
 [0.44296026]
 [0.69466287]
 [0.6261134 ]
 [0.7084663 ]
 [0.83197844]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4343073 ]
 [0.4424222 ]
 [0.6947936 ]
 [0.62603724]
 [0.7085907 ]
 [0.83232266]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43377447]
 [0.44188562]
 [0.6949239 ]
 [0.62596136]
 [0.7087149 ]
 [0.8326656 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43324295]
 [0.44135058]
 [0.6950537 ]
 [0.6258859 ]
 [0.708839  ]
 [0.83300734]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43271273]
 [0.44081703]
 [0.69518304]
 [0.62581086]
 [0.70896316]
 [0.83334786]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4321838 ]
 [0.44028503]
 [0.6953119 ]
 [0.62573624]
 [0.7090872 ]
 [0.8336871 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43165618]
 [0.43975455]
 [0.6954403 ]
 [0.62566197]
 [0.7092112 ]
 [0.834025  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4311298 ]
 [0.4392255 ]
 [0.69556826]
 [0.6255881 ]
 [0.7093351 ]
 [0.83436173]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.43060476]
 [0.438698  ]
 [0.6956958 ]
 [0.6255147 ]
 [0.7094588 ]
 [0.8346973 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.430081  ]
 [0.43817195]
 [0.69582283]
 [0.62544155]
 [0.70958257]
 [0.8350317 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42955852]
 [0.43764746]
 [0.69594944]
 [0.62536895]
 [0.70970625]
 [0.8353648 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4290373 ]
 [0.4371244 ]
 [0.6960756 ]
 [0.62529665]
 [0.70982987]
 [0.8356966 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42851737]
 [0.4366029 ]
 [0.6962013 ]
 [0.6252248 ]
 [0.7099534 ]
 [0.8360273 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42799872]
 [0.43608278]
 [0.69632655]
 [0.6251533 ]
 [0.71007687]
 [0.8363568 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42748132]
 [0.43556422]
 [0.69645137]
 [0.6250822 ]
 [0.71020025]
 [0.83668506]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42696518]
 [0.43504706]
 [0.6965757 ]
 [0.62501144]
 [0.7103236 ]
 [0.8370122 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4264503 ]
 [0.43453145]
 [0.6966997 ]
 [0.6249412 ]
 [0.71044683]
 [0.8373381 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42593673]
 [0.4340172 ]
 [0.6968231 ]
 [0.6248712 ]
 [0.71057004]
 [0.8376629 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42542437]
 [0.43350446]
 [0.69694614]
 [0.62480164]
 [0.71069306]
 [0.83798647]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42491326]
 [0.43299317]
 [0.6970687 ]
 [0.6247324 ]
 [0.7108161 ]
 [0.83830875]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4244034 ]
 [0.43248332]
 [0.6971909 ]
 [0.6246636 ]
 [0.710939  ]
 [0.83863   ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42389476]
 [0.4319749 ]
 [0.6973126 ]
 [0.6245951 ]
 [0.71106184]
 [0.83895004]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4233874 ]
 [0.43146795]
 [0.6974339 ]
 [0.6245271 ]
 [0.7111847 ]
 [0.83926904]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4228813]
 [0.4309624]
 [0.6975547]
 [0.6244594]
 [0.7113074]
 [0.8395868]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4223764 ]
 [0.4304583 ]
 [0.6976751 ]
 [0.62439203]
 [0.71143   ]
 [0.83990335]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42187274]
 [0.42995563]
 [0.6977951 ]
 [0.62432504]
 [0.71155256]
 [0.84021884]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4213703 ]
 [0.4294544 ]
 [0.6979146 ]
 [0.62425846]
 [0.71167505]
 [0.8405332 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4208691 ]
 [0.4289546 ]
 [0.69803375]
 [0.62419224]
 [0.71179754]
 [0.8408465 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.42036912]
 [0.4284562 ]
 [0.6981524 ]
 [0.62412643]
 [0.71191984]
 [0.84115857]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41987035]
 [0.42795917]
 [0.6982707 ]
 [0.6240609 ]
 [0.7120421 ]
 [0.8414695 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41937277]
 [0.42746356]
 [0.6983885 ]
 [0.6239958 ]
 [0.7121642 ]
 [0.8417794 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4188764 ]
 [0.42696938]
 [0.6985059 ]
 [0.623931  ]
 [0.7122863 ]
 [0.84208816]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41838127]
 [0.42647654]
 [0.6986228 ]
 [0.62386656]
 [0.7124083 ]
 [0.84239584]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41788733]
 [0.42598516]
 [0.6987394 ]
 [0.62380254]
 [0.7125303 ]
 [0.8427023 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4173946 ]
 [0.42549515]
 [0.6988555 ]
 [0.6237388 ]
 [0.7126521 ]
 [0.8430078 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41690308]
 [0.42500654]
 [0.6989712 ]
 [0.62367547]
 [0.7127739 ]
 [0.84331214]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41641274]
 [0.42451924]
 [0.6990865 ]
 [0.62361246]
 [0.7128956 ]
 [0.8436154 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4159236 ]
 [0.4240334 ]
 [0.69920135]
 [0.6235498 ]
 [0.7130172 ]
 [0.84391767]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4154356 ]
 [0.4235489 ]
 [0.6993158 ]
 [0.62348753]
 [0.7131387 ]
 [0.84421873]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41494885]
 [0.42306575]
 [0.6994298 ]
 [0.6234256 ]
 [0.7132602 ]
 [0.8445187 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41446325]
 [0.42258397]
 [0.6995434 ]
 [0.623364  ]
 [0.71338147]
 [0.84481776]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41397882]
 [0.42210355]
 [0.6996566 ]
 [0.6233027 ]
 [0.71350276]
 [0.84511566]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41349557]
 [0.42162448]
 [0.6997694 ]
 [0.6232418 ]
 [0.71362394]
 [0.8454125 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4130135 ]
 [0.42114678]
 [0.6998818 ]
 [0.62318116]
 [0.71374506]
 [0.8457083 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41253257]
 [0.42067042]
 [0.69999367]
 [0.62312096]
 [0.71386606]
 [0.846003  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4120528 ]
 [0.4201954 ]
 [0.70010525]
 [0.62306106]
 [0.713987  ]
 [0.8462967 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.41157424]
 [0.4197217 ]
 [0.70021635]
 [0.62300146]
 [0.7141079 ]
 [0.8465893 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4110968 ]
 [0.41924933]
 [0.70032704]
 [0.6229422 ]
 [0.71422863]
 [0.8468809 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
300 0.5423399

hypothesis: [[0.4106205 ]
 [0.4187783 ]
 [0.7004374 ]
 [0.6228833 ]
 [0.71434927]
 [0.84717155]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4101454 ]
 [0.41830862]
 [0.7005473 ]
 [0.6228247 ]
 [0.71446985]
 [0.8474611 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40967143]
 [0.41784024]
 [0.70065683]
 [0.6227665 ]
 [0.7145903 ]
 [0.84774965]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40919858]
 [0.4173732 ]
 [0.7007659 ]
 [0.6227086 ]
 [0.7147108 ]
 [0.84803706]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4087269 ]
 [0.41690746]
 [0.70087457]
 [0.622651  ]
 [0.71483105]
 [0.8483236 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40825632]
 [0.41644302]
 [0.70098287]
 [0.62259376]
 [0.7149513 ]
 [0.8486091 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40778694]
 [0.41597986]
 [0.7010908 ]
 [0.6225368 ]
 [0.71507144]
 [0.8488935 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40731862]
 [0.41551805]
 [0.7011982 ]
 [0.6224802 ]
 [0.7151915 ]
 [0.849177  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40685147]
 [0.4150575 ]
 [0.7013053 ]
 [0.6224239 ]
 [0.7153114 ]
 [0.8494594 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40638542]
 [0.4145983 ]
 [0.701412  ]
 [0.6223679 ]
 [0.7154313 ]
 [0.84974086]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4059205 ]
 [0.4141403 ]
 [0.7015183 ]
 [0.62231225]
 [0.715551  ]
 [0.8500213 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40545672]
 [0.41368368]
 [0.7016242 ]
 [0.62225693]
 [0.71567076]
 [0.85030085]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40499404]
 [0.4132283 ]
 [0.70172966]
 [0.6222019 ]
 [0.7157904 ]
 [0.8505793 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40453246]
 [0.4127742 ]
 [0.7018348 ]
 [0.6221472 ]
 [0.71590984]
 [0.85085684]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.404072  ]
 [0.41232136]
 [0.70193946]
 [0.62209284]
 [0.7160293 ]
 [0.8511334 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4036126 ]
 [0.41186976]
 [0.70204383]
 [0.6220387 ]
 [0.7161486 ]
 [0.85140896]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40315437]
 [0.41141945]
 [0.7021477 ]
 [0.62198496]
 [0.71626776]
 [0.85168356]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4026972 ]
 [0.41097042]
 [0.70225126]
 [0.6219315 ]
 [0.71638685]
 [0.85195726]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.40224117]
 [0.4105226 ]
 [0.7023544 ]
 [0.62187827]
 [0.7165059 ]
 [0.8522299 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4017862 ]
 [0.4100761 ]
 [0.70245713]
 [0.62182546]
 [0.71662486]
 [0.8525016 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4013323 ]
 [0.40963078]
 [0.7025595 ]
 [0.6217729 ]
 [0.71674365]
 [0.8527724 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4008795 ]
 [0.40918675]
 [0.70266145]
 [0.6217206 ]
 [0.71686244]
 [0.8530422 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.4004278 ]
 [0.40874395]
 [0.7027631 ]
 [0.6216687 ]
 [0.71698105]
 [0.8533111 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39997718]
 [0.40830237]
 [0.7028643 ]
 [0.621617  ]
 [0.71709967]
 [0.85357904]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3995276 ]
 [0.40786204]
 [0.7029651 ]
 [0.6215657 ]
 [0.7172181 ]
 [0.8538461 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3990791 ]
 [0.40742296]
 [0.7030655 ]
 [0.6215146 ]
 [0.7173364 ]
 [0.85411215]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39863172]
 [0.40698507]
 [0.7031656 ]
 [0.6214639 ]
 [0.7174547 ]
 [0.8543773 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39818537]
 [0.4065484 ]
 [0.70326525]
 [0.6214134 ]
 [0.7175728 ]
 [0.8546415 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3977401 ]
 [0.40611297]
 [0.70336455]
 [0.6213632 ]
 [0.71769094]
 [0.8549048 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3972959 ]
 [0.40567872]
 [0.7034635 ]
 [0.62131333]
 [0.7178089 ]
 [0.8551672 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39685273]
 [0.40524572]
 [0.703562  ]
 [0.62126374]
 [0.71792674]
 [0.85542864]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39641058]
 [0.4048139 ]
 [0.70366013]
 [0.62121445]
 [0.7180446 ]
 [0.8556893 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39596954]
 [0.40438324]
 [0.703758  ]
 [0.6211654 ]
 [0.71816224]
 [0.855949  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39552954]
 [0.40395385]
 [0.7038554 ]
 [0.62111664]
 [0.7182798 ]
 [0.8562077 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39509058]
 [0.40352562]
 [0.70395243]
 [0.62106824]
 [0.7183972 ]
 [0.85646564]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39465266]
 [0.40309858]
 [0.70404905]
 [0.6210201 ]
 [0.7185146 ]
 [0.85672253]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39421576]
 [0.4026727 ]
 [0.7041454 ]
 [0.62097216]
 [0.71863186]
 [0.8569786 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39377993]
 [0.40224808]
 [0.7042413 ]
 [0.62092453]
 [0.71874905]
 [0.8572338 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39334512]
 [0.40182456]
 [0.70433676]
 [0.6208772 ]
 [0.7188661 ]
 [0.8574881 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39291134]
 [0.40140224]
 [0.70443195]
 [0.6208301 ]
 [0.71898305]
 [0.8577415 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3924786]
 [0.4009811]
 [0.7045268]
 [0.6207833]
 [0.7190999]
 [0.8579941]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39204684]
 [0.4005611 ]
 [0.7046212 ]
 [0.62073684]
 [0.71921664]
 [0.85824573]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3916161 ]
 [0.40014225]
 [0.70471525]
 [0.6206906 ]
 [0.71933335]
 [0.8584966 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39118645]
 [0.3997246 ]
 [0.704809  ]
 [0.6206446 ]
 [0.7194499 ]
 [0.8587465 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39075774]
 [0.3993081 ]
 [0.70490235]
 [0.620599  ]
 [0.71956635]
 [0.85899556]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.39033008]
 [0.39889276]
 [0.7049953 ]
 [0.62055355]
 [0.7196827 ]
 [0.8592438 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38990343]
 [0.3984785 ]
 [0.7050879 ]
 [0.6205084 ]
 [0.71979886]
 [0.85949117]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3894778 ]
 [0.39806545]
 [0.70518017]
 [0.6204635 ]
 [0.7199151 ]
 [0.85973763]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3890531 ]
 [0.39765355]
 [0.7052721 ]
 [0.6204189 ]
 [0.72003114]
 [0.8599834 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38862947]
 [0.39724272]
 [0.7053635 ]
 [0.6203745 ]
 [0.720147  ]
 [0.8602282 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3882068 ]
 [0.3968331 ]
 [0.70545477]
 [0.62033045]
 [0.72026277]
 [0.86047214]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38778514]
 [0.39642456]
 [0.70554554]
 [0.6202866 ]
 [0.7203786 ]
 [0.8607153 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3873645 ]
 [0.39601716]
 [0.705636  ]
 [0.620243  ]
 [0.7204942 ]
 [0.8609576 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3869448 ]
 [0.39561087]
 [0.7057261 ]
 [0.62019974]
 [0.72060966]
 [0.8611991 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3865261 ]
 [0.39520574]
 [0.7058158 ]
 [0.6201567 ]
 [0.7207251 ]
 [0.86143976]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3861084 ]
 [0.39480168]
 [0.7059052 ]
 [0.6201139 ]
 [0.72084033]
 [0.8616796 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38569167]
 [0.39439875]
 [0.70599425]
 [0.62007135]
 [0.72095555]
 [0.86191857]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3852759 ]
 [0.3939969 ]
 [0.7060829 ]
 [0.6200291 ]
 [0.72107065]
 [0.8621568 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3848611 ]
 [0.39359617]
 [0.7061713 ]
 [0.6199871 ]
 [0.7211856 ]
 [0.86239415]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3844473 ]
 [0.39319655]
 [0.70625925]
 [0.6199453 ]
 [0.7213005 ]
 [0.8626308 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38403445]
 [0.39279807]
 [0.70634687]
 [0.6199038 ]
 [0.7214153 ]
 [0.86286664]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3836226 ]
 [0.39240062]
 [0.7064341 ]
 [0.6198625 ]
 [0.72152996]
 [0.86310154]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38321167]
 [0.39200428]
 [0.70652103]
 [0.6198215 ]
 [0.7216445 ]
 [0.86333567]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3828017 ]
 [0.39160904]
 [0.7066076 ]
 [0.6197807 ]
 [0.72175896]
 [0.8635691 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3823927 ]
 [0.39121485]
 [0.70669377]
 [0.6197401 ]
 [0.7218732 ]
 [0.8638016 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38198465]
 [0.39082173]
 [0.70677966]
 [0.6196999 ]
 [0.7219875 ]
 [0.8640334 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38157755]
 [0.3904297 ]
 [0.7068652 ]
 [0.61965984]
 [0.72210157]
 [0.86426437]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3811714 ]
 [0.39003876]
 [0.70695037]
 [0.61962   ]
 [0.7222156 ]
 [0.8644946 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.38076618]
 [0.38964885]
 [0.70703524]
 [0.61958045]
 [0.7223295 ]
 [0.864724  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3803619 ]
 [0.38926002]
 [0.7071197 ]
 [0.6195411 ]
 [0.7224432 ]
 [0.8649527 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3799586 ]
 [0.3888723 ]
 [0.70720387]
 [0.61950207]
 [0.72255695]
 [0.86518055]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3795562 ]
 [0.38848558]
 [0.70728767]
 [0.6194632 ]
 [0.7226705 ]
 [0.8654077 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37915474]
 [0.3880999 ]
 [0.7073711 ]
 [0.6194246 ]
 [0.7227839 ]
 [0.86563396]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3787542 ]
 [0.38771534]
 [0.70745426]
 [0.6193862 ]
 [0.7228973 ]
 [0.8658595 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3783546 ]
 [0.38733178]
 [0.70753706]
 [0.6193481 ]
 [0.72301054]
 [0.86608434]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37795594]
 [0.38694924]
 [0.70761955]
 [0.61931014]
 [0.7231236 ]
 [0.8663084 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3775582 ]
 [0.3865678 ]
 [0.7077017 ]
 [0.61927253]
 [0.7232367 ]
 [0.8665317 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37716138]
 [0.3861874 ]
 [0.70778346]
 [0.6192351 ]
 [0.7233496 ]
 [0.86675423]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37676546]
 [0.385808  ]
 [0.7078649 ]
 [0.6191979 ]
 [0.72346234]
 [0.8669761 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3763705 ]
 [0.38542965]
 [0.707946  ]
 [0.61916095]
 [0.72357506]
 [0.8671971 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37597638]
 [0.38505232]
 [0.70802677]
 [0.6191242 ]
 [0.72368765]
 [0.8674174 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37558323]
 [0.38467604]
 [0.70810723]
 [0.61908764]
 [0.72380006]
 [0.8676369 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37519094]
 [0.3843007 ]
 [0.70818734]
 [0.61905134]
 [0.7239124 ]
 [0.8678558 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37479955]
 [0.38392645]
 [0.7082671 ]
 [0.6190153 ]
 [0.72402465]
 [0.8680738 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37440908]
 [0.3835532 ]
 [0.7083466 ]
 [0.61897945]
 [0.72413677]
 [0.8682912 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3740195 ]
 [0.38318095]
 [0.7084257 ]
 [0.61894387]
 [0.72424877]
 [0.86850786]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37363085]
 [0.38280973]
 [0.70850444]
 [0.61890846]
 [0.72436076]
 [0.8687237 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3732431 ]
 [0.38243946]
 [0.70858294]
 [0.6188733 ]
 [0.72447246]
 [0.8689389 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3728562 ]
 [0.38207024]
 [0.7086611 ]
 [0.6188383 ]
 [0.72458416]
 [0.8691534 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37247017]
 [0.381702  ]
 [0.70873886]
 [0.6188036 ]
 [0.7246958 ]
 [0.8693672 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37208503]
 [0.38133478]
 [0.7088164 ]
 [0.6187691 ]
 [0.72480726]
 [0.8695802 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37170082]
 [0.38096857]
 [0.70889354]
 [0.61873484]
 [0.72491854]
 [0.8697925 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37131748]
 [0.38060328]
 [0.70897037]
 [0.61870074]
 [0.7250298 ]
 [0.87000406]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.370935  ]
 [0.380239  ]
 [0.7090469 ]
 [0.6186669 ]
 [0.72514087]
 [0.870215  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37055337]
 [0.3798757 ]
 [0.70912313]
 [0.6186332 ]
 [0.7252519 ]
 [0.8704252 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.37017262]
 [0.37951338]
 [0.70919895]
 [0.6185998 ]
 [0.7253628 ]
 [0.8706347 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3697928 ]
 [0.37915206]
 [0.70927453]
 [0.6185666 ]
 [0.72547364]
 [0.87084347]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3694138 ]
 [0.3787917 ]
 [0.70934975]
 [0.61853355]
 [0.72558427]
 [0.87105167]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36903566]
 [0.37843227]
 [0.7094247 ]
 [0.6185007 ]
 [0.7256948 ]
 [0.8712591 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3686584 ]
 [0.37807384]
 [0.70949924]
 [0.61846817]
 [0.7258052 ]
 [0.8714658 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
400 0.5182588

hypothesis: [[0.368282  ]
 [0.3777164 ]
 [0.70957357]
 [0.6184358 ]
 [0.7259156 ]
 [0.87167186]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36790645]
 [0.3773599 ]
 [0.70964754]
 [0.6184036 ]
 [0.7260258 ]
 [0.8718772 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36753172]
 [0.37700436]
 [0.70972115]
 [0.61837167]
 [0.7261359 ]
 [0.8720819 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36715788]
 [0.37664974]
 [0.7097944 ]
 [0.6183399 ]
 [0.72624594]
 [0.87228584]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36678487]
 [0.37629607]
 [0.7098675 ]
 [0.6183083 ]
 [0.72635573]
 [0.8724892 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36641273]
 [0.37594336]
 [0.7099402 ]
 [0.61827695]
 [0.7264655 ]
 [0.8726919 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36604142]
 [0.3755916 ]
 [0.71001256]
 [0.61824584]
 [0.72657514]
 [0.87289387]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36567095]
 [0.3752408 ]
 [0.7100847 ]
 [0.6182149 ]
 [0.72668475]
 [0.8730952 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3653013 ]
 [0.37489092]
 [0.71015644]
 [0.6181841 ]
 [0.72679406]
 [0.8732959 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3649325 ]
 [0.37454197]
 [0.71022785]
 [0.6181536 ]
 [0.72690344]
 [0.8734959 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3645646 ]
 [0.37419397]
 [0.710299  ]
 [0.6181233 ]
 [0.7270127 ]
 [0.8736952 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36419746]
 [0.3738469 ]
 [0.71036994]
 [0.61809313]
 [0.7271217 ]
 [0.873894  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36383116]
 [0.37350076]
 [0.7104404 ]
 [0.6180632 ]
 [0.7272306 ]
 [0.8740919 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36346567]
 [0.37315547]
 [0.7105107 ]
 [0.6180334 ]
 [0.7273395 ]
 [0.8742894 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.363101  ]
 [0.37281117]
 [0.7105806 ]
 [0.6180039 ]
 [0.72744817]
 [0.87448615]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36273718]
 [0.37246776]
 [0.7106502 ]
 [0.6179745 ]
 [0.7275568 ]
 [0.8746822 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3623742 ]
 [0.37212527]
 [0.71071947]
 [0.6179454 ]
 [0.72766536]
 [0.8748777 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36201197]
 [0.37178373]
 [0.7107885 ]
 [0.6179164 ]
 [0.7277738 ]
 [0.8750724 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3616506 ]
 [0.37144303]
 [0.7108572 ]
 [0.6178876 ]
 [0.727882  ]
 [0.8752666 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36129004]
 [0.3711033 ]
 [0.7109256 ]
 [0.617859  ]
 [0.72799015]
 [0.8754601 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36093026]
 [0.37076443]
 [0.71099365]
 [0.61783063]
 [0.7280983 ]
 [0.875653  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36057132]
 [0.37042648]
 [0.7110615 ]
 [0.6178024 ]
 [0.72820616]
 [0.8758453 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.36021316]
 [0.3700894 ]
 [0.71112895]
 [0.61777437]
 [0.728314  ]
 [0.87603694]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3598558 ]
 [0.3697532 ]
 [0.7111962 ]
 [0.61774653]
 [0.72842157]
 [0.876228  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35949928]
 [0.36941797]
 [0.71126306]
 [0.6177189 ]
 [0.7285293 ]
 [0.8764184 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35914353]
 [0.36908358]
 [0.71132964]
 [0.61769146]
 [0.72863674]
 [0.87660813]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35878858]
 [0.3687501 ]
 [0.7113959 ]
 [0.61766416]
 [0.7287441 ]
 [0.87679726]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35843438]
 [0.36841744]
 [0.7114619 ]
 [0.6176371 ]
 [0.7288513 ]
 [0.87698585]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35808104]
 [0.36808574]
 [0.7115277 ]
 [0.6176102 ]
 [0.7289585 ]
 [0.87717384]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35772848]
 [0.36775488]
 [0.71159303]
 [0.6175835 ]
 [0.7290655 ]
 [0.8773612 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3573767 ]
 [0.36742485]
 [0.71165824]
 [0.617557  ]
 [0.72917235]
 [0.87754786]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35702565]
 [0.36709568]
 [0.7117231 ]
 [0.6175306 ]
 [0.7292791 ]
 [0.87773395]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35667545]
 [0.36676747]
 [0.7117876 ]
 [0.6175045 ]
 [0.72938585]
 [0.87791955]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35632598]
 [0.36644006]
 [0.71185184]
 [0.61747843]
 [0.72949237]
 [0.87810445]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3559773 ]
 [0.3661135 ]
 [0.71191573]
 [0.6174526 ]
 [0.7295988 ]
 [0.87828875]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35562938]
 [0.36578786]
 [0.71197945]
 [0.617427  ]
 [0.72970515]
 [0.87847245]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35528225]
 [0.36546302]
 [0.7120428 ]
 [0.6174015 ]
 [0.7298113 ]
 [0.87865555]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35493588]
 [0.365139  ]
 [0.7121059 ]
 [0.6173762 ]
 [0.7299174 ]
 [0.87883806]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35459027]
 [0.3648159 ]
 [0.71216863]
 [0.61735106]
 [0.7300234 ]
 [0.87902004]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35424542]
 [0.36449367]
 [0.71223116]
 [0.61732614]
 [0.73012924]
 [0.87920135]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3539014 ]
 [0.36417225]
 [0.7122934 ]
 [0.6173014 ]
 [0.7302349 ]
 [0.8793822 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35355806]
 [0.36385167]
 [0.7123553 ]
 [0.61727685]
 [0.7303406 ]
 [0.8795624 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35321552]
 [0.36353195]
 [0.71241695]
 [0.6172524 ]
 [0.7304461 ]
 [0.87974197]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35287368]
 [0.363213  ]
 [0.7124783 ]
 [0.61722815]
 [0.7305515 ]
 [0.879921  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35253268]
 [0.36289495]
 [0.7125394 ]
 [0.61720407]
 [0.7306567 ]
 [0.8800994 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35219237]
 [0.36257774]
 [0.7126002 ]
 [0.61718017]
 [0.7307619 ]
 [0.88027734]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35185283]
 [0.36226135]
 [0.7126607 ]
 [0.61715645]
 [0.730867  ]
 [0.8804546 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35151404]
 [0.36194575]
 [0.7127209 ]
 [0.6171329 ]
 [0.73097193]
 [0.88063145]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35117596]
 [0.361631  ]
 [0.71278083]
 [0.6171095 ]
 [0.7310767 ]
 [0.8808076 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3508387 ]
 [0.36131707]
 [0.7128405 ]
 [0.6170863 ]
 [0.73118144]
 [0.8809832 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35050213]
 [0.361004  ]
 [0.7128999 ]
 [0.6170633 ]
 [0.73128605]
 [0.88115835]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.35016626]
 [0.36069167]
 [0.712959  ]
 [0.61704034]
 [0.7313905 ]
 [0.88133276]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3498312]
 [0.3603802]
 [0.7130178]
 [0.6170176]
 [0.7314949]
 [0.8815068]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3494968 ]
 [0.3600695 ]
 [0.7130764 ]
 [0.61699504]
 [0.73159915]
 [0.88168013]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3491632 ]
 [0.35975963]
 [0.71313465]
 [0.6169727 ]
 [0.7317032 ]
 [0.881853  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34883028]
 [0.35945058]
 [0.71319264]
 [0.6169504 ]
 [0.73180723]
 [0.88202524]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3484981 ]
 [0.3591423 ]
 [0.71325034]
 [0.61692834]
 [0.7319112 ]
 [0.88219696]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34816664]
 [0.35883486]
 [0.7133078 ]
 [0.6169064 ]
 [0.7320149 ]
 [0.88236815]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34783596]
 [0.35852817]
 [0.71336496]
 [0.61688465]
 [0.73211855]
 [0.8825388 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34750593]
 [0.3582223 ]
 [0.7134219 ]
 [0.616863  ]
 [0.7322221 ]
 [0.8827089 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34717667]
 [0.35791725]
 [0.7134785 ]
 [0.6168417 ]
 [0.73232555]
 [0.8828785 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34684807]
 [0.35761297]
 [0.71353483]
 [0.61682034]
 [0.7324289 ]
 [0.8830475 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34652022]
 [0.35730946]
 [0.7135909 ]
 [0.61679924]
 [0.732532  ]
 [0.883216  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34619308]
 [0.35700676]
 [0.7136467 ]
 [0.6167783 ]
 [0.7326352 ]
 [0.883384  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34586662]
 [0.35670483]
 [0.7137022 ]
 [0.61675745]
 [0.73273814]
 [0.88355136]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3455409]
 [0.3564037]
 [0.7137575]
 [0.6167368]
 [0.7328411]
 [0.8837184]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34521592]
 [0.35610336]
 [0.71381253]
 [0.6167164 ]
 [0.7329438 ]
 [0.8838847 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3448916 ]
 [0.35580376]
 [0.71386725]
 [0.6166961 ]
 [0.7330464 ]
 [0.88405055]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.344568  ]
 [0.35550493]
 [0.7139217 ]
 [0.61667585]
 [0.73314893]
 [0.88421583]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34424508]
 [0.35520688]
 [0.7139759 ]
 [0.6166559 ]
 [0.73325133]
 [0.8843807 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34392285]
 [0.3549096 ]
 [0.7140299 ]
 [0.616636  ]
 [0.7333537 ]
 [0.88454497]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34360135]
 [0.35461313]
 [0.71408355]
 [0.6166163 ]
 [0.7334558 ]
 [0.8847088 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34328052]
 [0.35431734]
 [0.71413696]
 [0.6165967 ]
 [0.7335578 ]
 [0.884872  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34296042]
 [0.35402238]
 [0.71419007]
 [0.6165774 ]
 [0.73365986]
 [0.88503474]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.342641  ]
 [0.35372815]
 [0.71424294]
 [0.6165581 ]
 [0.7337616 ]
 [0.885197  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34232223]
 [0.35343468]
 [0.71429557]
 [0.61653894]
 [0.7338634 ]
 [0.8853588 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34200415]
 [0.35314196]
 [0.71434796]
 [0.61652   ]
 [0.73396504]
 [0.88552   ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3416868 ]
 [0.35285   ]
 [0.7144    ]
 [0.6165012 ]
 [0.7340665 ]
 [0.88568074]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34137005]
 [0.35255873]
 [0.71445185]
 [0.6164825 ]
 [0.7341678 ]
 [0.88584095]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34105402]
 [0.35226825]
 [0.7145034 ]
 [0.61646396]
 [0.73426914]
 [0.88600063]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3407387 ]
 [0.35197854]
 [0.71455467]
 [0.6164456 ]
 [0.7343703 ]
 [0.88615984]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34042403]
 [0.35168955]
 [0.7146057 ]
 [0.61642736]
 [0.7344713 ]
 [0.88631856]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.34011   ]
 [0.35140133]
 [0.71465653]
 [0.61640936]
 [0.73457223]
 [0.88647676]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33979672]
 [0.35111377]
 [0.7147071 ]
 [0.6163914 ]
 [0.734673  ]
 [0.8866345 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33948404]
 [0.350827  ]
 [0.7147574 ]
 [0.61637366]
 [0.7347737 ]
 [0.8867918 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33917207]
 [0.35054097]
 [0.71480733]
 [0.616356  ]
 [0.7348743 ]
 [0.8869486 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33886075]
 [0.35025564]
 [0.7148571 ]
 [0.6163385 ]
 [0.73497474]
 [0.88710475]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3385501 ]
 [0.349971  ]
 [0.71490663]
 [0.6163211 ]
 [0.7350751 ]
 [0.8872606 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3382401 ]
 [0.34968713]
 [0.7149558 ]
 [0.6163038 ]
 [0.7351754 ]
 [0.8874158 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33793074]
 [0.34940398]
 [0.7150048 ]
 [0.61628675]
 [0.7352755 ]
 [0.8875707 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33762205]
 [0.34912157]
 [0.71505356]
 [0.6162698 ]
 [0.7353755 ]
 [0.887725  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33731407]
 [0.34883988]
 [0.715102  ]
 [0.616253  ]
 [0.7354753 ]
 [0.88787884]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3370067 ]
 [0.34855887]
 [0.7151503 ]
 [0.6162363 ]
 [0.73557514]
 [0.8880322 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33669996]
 [0.34827858]
 [0.7151983 ]
 [0.6162198 ]
 [0.73567474]
 [0.8881851 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3363939 ]
 [0.347999  ]
 [0.71524596]
 [0.6162034 ]
 [0.73577434]
 [0.88833755]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3360885 ]
 [0.34772015]
 [0.7152935 ]
 [0.61618716]
 [0.7358738 ]
 [0.8884895 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33578375]
 [0.347442  ]
 [0.71534073]
 [0.61617106]
 [0.73597306]
 [0.88864106]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3354796]
 [0.3471645]
 [0.7153877]
 [0.616155 ]
 [0.7360723]
 [0.8887921]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3351761 ]
 [0.34688783]
 [0.71543443]
 [0.6161392 ]
 [0.73617136]
 [0.8889426 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33487326]
 [0.3466117 ]
 [0.7154809 ]
 [0.61612344]
 [0.73627037]
 [0.8890927 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
500 0.4997227

hypothesis: [[0.3345711 ]
 [0.34633642]
 [0.7155272 ]
 [0.61610794]
 [0.73636925]
 [0.88924235]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33426946]
 [0.34606177]
 [0.7155732 ]
 [0.6160925 ]
 [0.736468  ]
 [0.8893915 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33396858]
 [0.34578773]
 [0.71561885]
 [0.6160771 ]
 [0.73656666]
 [0.8895402 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3336683 ]
 [0.3455145 ]
 [0.7156644 ]
 [0.616062  ]
 [0.7366651 ]
 [0.88968843]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3333686 ]
 [0.3452419 ]
 [0.7157096 ]
 [0.61604697]
 [0.73676366]
 [0.88983625]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33306956]
 [0.34497002]
 [0.7157546 ]
 [0.616032  ]
 [0.7368619 ]
 [0.8899836 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33277118]
 [0.34469885]
 [0.71579945]
 [0.6160173 ]
 [0.7369601 ]
 [0.8901305 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3324734 ]
 [0.3444283 ]
 [0.7158439 ]
 [0.6160026 ]
 [0.73705816]
 [0.8902771 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33217627]
 [0.34415847]
 [0.71588826]
 [0.6159881 ]
 [0.73715615]
 [0.89042306]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33187973]
 [0.34388933]
 [0.71593225]
 [0.6159738 ]
 [0.7372541 ]
 [0.89056855]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33158383]
 [0.34362084]
 [0.7159761 ]
 [0.61595947]
 [0.7373518 ]
 [0.8907137 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33128852]
 [0.343353  ]
 [0.71601963]
 [0.61594534]
 [0.7374494 ]
 [0.89085835]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33099383]
 [0.34308586]
 [0.71606296]
 [0.61593133]
 [0.7375469 ]
 [0.89100266]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3306998 ]
 [0.3428194 ]
 [0.71610606]
 [0.61591744]
 [0.7376443 ]
 [0.8911464 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33040634]
 [0.34255362]
 [0.71614885]
 [0.61590374]
 [0.73774165]
 [0.8912898 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.33011353]
 [0.3422885 ]
 [0.71619153]
 [0.61589015]
 [0.7378389 ]
 [0.8914327 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32982135]
 [0.34202406]
 [0.71623385]
 [0.6158767 ]
 [0.73793596]
 [0.89157516]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3295297 ]
 [0.3417602 ]
 [0.716276  ]
 [0.6158632 ]
 [0.7380329 ]
 [0.89171726]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3292387 ]
 [0.34149706]
 [0.7163179 ]
 [0.61585003]
 [0.7381298 ]
 [0.8918588 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3289483 ]
 [0.34123456]
 [0.7163595 ]
 [0.61583686]
 [0.7382264 ]
 [0.892     ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3286585 ]
 [0.34097272]
 [0.7164009 ]
 [0.61582386]
 [0.7383231 ]
 [0.8921408 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3283693 ]
 [0.34071153]
 [0.7164421 ]
 [0.615811  ]
 [0.73841965]
 [0.8922811 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3280807 ]
 [0.34045097]
 [0.71648306]
 [0.61579823]
 [0.73851603]
 [0.89242107]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32779267]
 [0.34019107]
 [0.71652377]
 [0.61578554]
 [0.73861235]
 [0.89256054]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3275053 ]
 [0.33993185]
 [0.7165643 ]
 [0.6157731 ]
 [0.73870856]
 [0.8926996 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32721847]
 [0.33967322]
 [0.71660453]
 [0.6157607 ]
 [0.7388046 ]
 [0.8928383 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32693225]
 [0.3394153 ]
 [0.7166445 ]
 [0.6157484 ]
 [0.73890054]
 [0.8929765 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32664663]
 [0.339158  ]
 [0.71668434]
 [0.61573625]
 [0.7389964 ]
 [0.8931144 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3263616 ]
 [0.33890128]
 [0.71672386]
 [0.6157242 ]
 [0.7390922 ]
 [0.8932517 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3260771 ]
 [0.33864528]
 [0.7167632 ]
 [0.61571234]
 [0.73918784]
 [0.8933887 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32579333]
 [0.33838993]
 [0.7168023 ]
 [0.6157006 ]
 [0.7392834 ]
 [0.89352536]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32551   ]
 [0.33813518]
 [0.7168412 ]
 [0.6156889 ]
 [0.7393788 ]
 [0.89366156]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32522732]
 [0.3378811 ]
 [0.71687984]
 [0.6156774 ]
 [0.7394741 ]
 [0.8937972 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3249452 ]
 [0.33762753]
 [0.71691823]
 [0.615666  ]
 [0.7395693 ]
 [0.8939326 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3246637 ]
 [0.33737466]
 [0.71695644]
 [0.61565465]
 [0.73966444]
 [0.8940676 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32438272]
 [0.33712244]
 [0.7169944 ]
 [0.6156435 ]
 [0.7397594 ]
 [0.8942022 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32410234]
 [0.3368708 ]
 [0.71703213]
 [0.61563236]
 [0.7398542 ]
 [0.8943363 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32382256]
 [0.33661973]
 [0.7170696 ]
 [0.6156214 ]
 [0.7399489 ]
 [0.89447   ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3235433 ]
 [0.3363694 ]
 [0.7171069 ]
 [0.61561054]
 [0.7400436 ]
 [0.8946034 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32326466]
 [0.33611965]
 [0.7171439 ]
 [0.6155998 ]
 [0.74013823]
 [0.8947363 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32298654]
 [0.3358705 ]
 [0.7171808 ]
 [0.61558914]
 [0.7402326 ]
 [0.89486885]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32270908]
 [0.33562198]
 [0.7172174 ]
 [0.6155787 ]
 [0.74032694]
 [0.895001  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3224321 ]
 [0.33537406]
 [0.7172538 ]
 [0.6155683 ]
 [0.74042106]
 [0.8951328 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3221557 ]
 [0.33512676]
 [0.7172899 ]
 [0.615558  ]
 [0.7405153 ]
 [0.89526415]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32187986]
 [0.33488002]
 [0.71732587]
 [0.61554784]
 [0.7406093 ]
 [0.89539516]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3216046 ]
 [0.33463395]
 [0.7173616 ]
 [0.6155378 ]
 [0.74070317]
 [0.89552575]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3213299 ]
 [0.33438846]
 [0.71739715]
 [0.61552787]
 [0.7407969 ]
 [0.89565593]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32105577]
 [0.33414358]
 [0.7174324 ]
 [0.61551803]
 [0.7408906 ]
 [0.89578575]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32078215]
 [0.33389926]
 [0.7174675 ]
 [0.6155083 ]
 [0.7409842 ]
 [0.8959152 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32050908]
 [0.33365557]
 [0.7175023 ]
 [0.61549866]
 [0.74107754]
 [0.8960442 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.32023662]
 [0.33341247]
 [0.71753687]
 [0.6154891 ]
 [0.741171  ]
 [0.89617294]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3199647 ]
 [0.33317   ]
 [0.7175713 ]
 [0.6154797 ]
 [0.74126416]
 [0.89630115]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3196933 ]
 [0.3329281 ]
 [0.7176055 ]
 [0.61547047]
 [0.7413573 ]
 [0.8964291 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31942248]
 [0.33268675]
 [0.71763945]
 [0.61546123]
 [0.7414503 ]
 [0.8965566 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31915218]
 [0.332446  ]
 [0.7176732 ]
 [0.6154522 ]
 [0.7415432 ]
 [0.8966838 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31888247]
 [0.33220595]
 [0.71770674]
 [0.6154432 ]
 [0.7416361 ]
 [0.89681065]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3186133 ]
 [0.33196637]
 [0.71774006]
 [0.6154344 ]
 [0.74172884]
 [0.896937  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3183446 ]
 [0.33172747]
 [0.7177732 ]
 [0.6154257 ]
 [0.7418215 ]
 [0.8970631 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31807655]
 [0.3314891 ]
 [0.7178061 ]
 [0.61541706]
 [0.7419139 ]
 [0.8971887 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31780896]
 [0.33125132]
 [0.71783876]
 [0.6154086 ]
 [0.7420064 ]
 [0.8973141 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31754196]
 [0.3310141 ]
 [0.71787125]
 [0.61540014]
 [0.7420987 ]
 [0.897439  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31727546]
 [0.3307775 ]
 [0.7179035 ]
 [0.6153919 ]
 [0.7421909 ]
 [0.89756364]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3170095 ]
 [0.3305414 ]
 [0.7179356 ]
 [0.6153836 ]
 [0.74228287]
 [0.8976878 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31674406]
 [0.33030593]
 [0.7179674 ]
 [0.6153755 ]
 [0.7423749 ]
 [0.89781165]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31647915]
 [0.33007097]
 [0.717999  ]
 [0.61536753]
 [0.7424667 ]
 [0.89793503]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3162148 ]
 [0.3298366 ]
 [0.71803033]
 [0.61535954]
 [0.7425584 ]
 [0.8980582 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31595093]
 [0.32960284]
 [0.71806157]
 [0.61535174]
 [0.74265003]
 [0.8981809 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31568763]
 [0.3293696 ]
 [0.71809256]
 [0.61534405]
 [0.7427416 ]
 [0.89830333]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31542486]
 [0.32913697]
 [0.7181233 ]
 [0.6153364 ]
 [0.742833  ]
 [0.8984254 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3151626 ]
 [0.32890487]
 [0.7181539 ]
 [0.6153289 ]
 [0.7429244 ]
 [0.89854705]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31490088]
 [0.32867336]
 [0.71818423]
 [0.6153215 ]
 [0.7430155 ]
 [0.89866835]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31463963]
 [0.32844242]
 [0.7182144 ]
 [0.61531425]
 [0.74310666]
 [0.8987894 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31437895]
 [0.32821196]
 [0.7182443 ]
 [0.61530703]
 [0.7431976 ]
 [0.89891   ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3141188 ]
 [0.3279822 ]
 [0.71827406]
 [0.61529994]
 [0.7432886 ]
 [0.89903027]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3138591 ]
 [0.3277529 ]
 [0.71830356]
 [0.61529297]
 [0.74337935]
 [0.8991502 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3136    ]
 [0.32752416]
 [0.7183329 ]
 [0.61528605]
 [0.74347   ]
 [0.89926976]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31334132]
 [0.32729596]
 [0.71836203]
 [0.61527926]
 [0.7435606 ]
 [0.89938897]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31308323]
 [0.32706833]
 [0.71839094]
 [0.6152725 ]
 [0.7436511 ]
 [0.8995079 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31282562]
 [0.32684118]
 [0.7184196 ]
 [0.6152659 ]
 [0.74374145]
 [0.89962643]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31256852]
 [0.32661468]
 [0.7184481 ]
 [0.6152594 ]
 [0.74383175]
 [0.8997445 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31231195]
 [0.3263886 ]
 [0.7184764 ]
 [0.615253  ]
 [0.7439219 ]
 [0.89986247]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31205586]
 [0.32616317]
 [0.7185045 ]
 [0.61524665]
 [0.74401194]
 [0.89997995]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3118003 ]
 [0.32593828]
 [0.7185324 ]
 [0.61524045]
 [0.7441019 ]
 [0.9000972 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3115452 ]
 [0.32571387]
 [0.7185601 ]
 [0.61523426]
 [0.7441917 ]
 [0.90021396]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31129062]
 [0.32549006]
 [0.7185875 ]
 [0.6152283 ]
 [0.7442815 ]
 [0.9003305 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31103653]
 [0.32526675]
 [0.7186148 ]
 [0.61522233]
 [0.74437106]
 [0.9004466 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31078297]
 [0.32504398]
 [0.7186419 ]
 [0.61521643]
 [0.7444606 ]
 [0.90056247]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31052995]
 [0.32482174]
 [0.71866876]
 [0.6152107 ]
 [0.74455005]
 [0.9006779 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31027734]
 [0.32460004]
 [0.71869546]
 [0.61520505]
 [0.74463934]
 [0.90079314]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.31002527]
 [0.3243789 ]
 [0.7187219 ]
 [0.6151995 ]
 [0.7447286 ]
 [0.90090793]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3097737 ]
 [0.32415822]
 [0.7187482 ]
 [0.615194  ]
 [0.74481773]
 [0.90102243]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30952263]
 [0.32393813]
 [0.71877426]
 [0.61518866]
 [0.7449068 ]
 [0.9011365 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30927205]
 [0.32371855]
 [0.7188002 ]
 [0.6151834 ]
 [0.74499565]
 [0.9012505 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30902192]
 [0.3234995 ]
 [0.7188259 ]
 [0.6151782 ]
 [0.74508446]
 [0.90136397]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30877233]
 [0.32328093]
 [0.7188513 ]
 [0.6151731 ]
 [0.7451732 ]
 [0.9014772 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30852318]
 [0.32306293]
 [0.71887666]
 [0.6151681 ]
 [0.7452618 ]
 [0.9015901 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30827454]
 [0.32284543]
 [0.71890175]
 [0.6151632 ]
 [0.7453503 ]
 [0.90170264]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30802637]
 [0.3226284 ]
 [0.71892667]
 [0.6151584 ]
 [0.7454387 ]
 [0.9018149 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30777872]
 [0.32241198]
 [0.71895134]
 [0.6151537 ]
 [0.7455271 ]
 [0.90192676]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3075315 ]
 [0.322196  ]
 [0.71897584]
 [0.61514896]
 [0.7456152 ]
 [0.9020383 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
600 0.48470655

hypothesis: [[0.3072848 ]
 [0.32198054]
 [0.71900016]
 [0.61514443]
 [0.7457033 ]
 [0.90214956]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30703855]
 [0.3217656 ]
 [0.7190243 ]
 [0.61513996]
 [0.74579126]
 [0.9022606 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3067928 ]
 [0.3215512 ]
 [0.71904826]
 [0.6151356 ]
 [0.7458791 ]
 [0.9023712 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30654752]
 [0.32133728]
 [0.719072  ]
 [0.6151313 ]
 [0.745967  ]
 [0.9024816 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30630273]
 [0.3211239 ]
 [0.7190955 ]
 [0.61512715]
 [0.7460547 ]
 [0.90259165]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3060584 ]
 [0.320911  ]
 [0.7191189 ]
 [0.61512303]
 [0.7461423 ]
 [0.90270126]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30581456]
 [0.32069862]
 [0.7191421 ]
 [0.6151191 ]
 [0.7462298 ]
 [0.9028107 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3055712 ]
 [0.32048678]
 [0.7191651 ]
 [0.61511517]
 [0.74631727]
 [0.9029198 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3053283 ]
 [0.32027537]
 [0.71918786]
 [0.61511135]
 [0.74640447]
 [0.90302855]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30508584]
 [0.32006449]
 [0.7192105 ]
 [0.6151076 ]
 [0.74649173]
 [0.9031371 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3048439 ]
 [0.31985408]
 [0.7192329 ]
 [0.61510396]
 [0.7465788 ]
 [0.9032453 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30460238]
 [0.3196442 ]
 [0.7192551 ]
 [0.6151004 ]
 [0.7466658 ]
 [0.9033531 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30436134]
 [0.31943482]
 [0.71927714]
 [0.6150969 ]
 [0.74675274]
 [0.9034607 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30412078]
 [0.3192259 ]
 [0.71929896]
 [0.6150935 ]
 [0.7468396 ]
 [0.9035679 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30388063]
 [0.31901747]
 [0.71932065]
 [0.6150902 ]
 [0.7469262 ]
 [0.9036749 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30364102]
 [0.31880957]
 [0.7193421 ]
 [0.615087  ]
 [0.74701285]
 [0.90378153]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30340183]
 [0.31860214]
 [0.7193634 ]
 [0.6150838 ]
 [0.7470993 ]
 [0.90388787]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30316305]
 [0.31839514]
 [0.7193845 ]
 [0.6150807 ]
 [0.7471856 ]
 [0.9039939 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30292478]
 [0.31818873]
 [0.71940535]
 [0.61507773]
 [0.747272  ]
 [0.90409964]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.302687  ]
 [0.31798273]
 [0.7194261 ]
 [0.6150749 ]
 [0.74735814]
 [0.9042052 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3024496 ]
 [0.31777728]
 [0.71944666]
 [0.6150721 ]
 [0.7474443 ]
 [0.9043102 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30221272]
 [0.31757227]
 [0.719467  ]
 [0.6150693 ]
 [0.7475302 ]
 [0.9044152 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30197626]
 [0.31736773]
 [0.71948713]
 [0.61506665]
 [0.7476161 ]
 [0.9045197 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30174023]
 [0.3171637 ]
 [0.71950716]
 [0.61506414]
 [0.74770194]
 [0.904624  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3015047 ]
 [0.31696016]
 [0.71952695]
 [0.6150617 ]
 [0.7477877 ]
 [0.90472806]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3012696 ]
 [0.31675702]
 [0.7195466 ]
 [0.6150593 ]
 [0.74787325]
 [0.9048317 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30103493]
 [0.31655443]
 [0.719566  ]
 [0.615057  ]
 [0.74795884]
 [0.9049352 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.3008007 ]
 [0.3163523 ]
 [0.71958524]
 [0.6150547 ]
 [0.7480442 ]
 [0.9050383 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30056697]
 [0.3161506 ]
 [0.7196044 ]
 [0.6150526 ]
 [0.7481294 ]
 [0.9051411 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30033362]
 [0.31594944]
 [0.71962327]
 [0.61505055]
 [0.7482147 ]
 [0.9052437 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.30010074]
 [0.31574875]
 [0.719642  ]
 [0.6150486 ]
 [0.7482999 ]
 [0.905346  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2998683 ]
 [0.31554842]
 [0.7196604 ]
 [0.6150466 ]
 [0.7483849 ]
 [0.9054479 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2996363 ]
 [0.31534865]
 [0.7196789 ]
 [0.61504483]
 [0.7484698 ]
 [0.90554965]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29940477]
 [0.3151493 ]
 [0.719697  ]
 [0.61504304]
 [0.74855465]
 [0.90565103]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29917365]
 [0.31495044]
 [0.71971494]
 [0.6150414 ]
 [0.74863935]
 [0.9057521 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29894292]
 [0.314752  ]
 [0.71973276]
 [0.61503977]
 [0.748724  ]
 [0.905853  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29871267]
 [0.3145541 ]
 [0.7197504 ]
 [0.6150382 ]
 [0.7488085 ]
 [0.90595365]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29848287]
 [0.31435657]
 [0.71976787]
 [0.6150368 ]
 [0.7488929 ]
 [0.90605396]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29825348]
 [0.31415957]
 [0.7197851 ]
 [0.6150354 ]
 [0.74897724]
 [0.90615386]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29802454]
 [0.31396297]
 [0.7198022 ]
 [0.61503416]
 [0.7490615 ]
 [0.90625364]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.297796  ]
 [0.3137669 ]
 [0.7198192 ]
 [0.6150329 ]
 [0.7491457 ]
 [0.90635324]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2975679]
 [0.3135712]
 [0.7198359]
 [0.6150318]
 [0.7492296]
 [0.9064523]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29734027]
 [0.313376  ]
 [0.7198525 ]
 [0.61503077]
 [0.74931365]
 [0.90655124]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29711306]
 [0.31318128]
 [0.7198689 ]
 [0.6150298 ]
 [0.7493975 ]
 [0.90664995]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29688627]
 [0.31298697]
 [0.7198851 ]
 [0.615029  ]
 [0.74948126]
 [0.9067483 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29665986]
 [0.3127931 ]
 [0.71990114]
 [0.61502814]
 [0.74956495]
 [0.90684646]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29643393]
 [0.31259972]
 [0.71991706]
 [0.6150274 ]
 [0.7496486 ]
 [0.9069443 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29620838]
 [0.31240678]
 [0.7199328 ]
 [0.6150268 ]
 [0.7497321 ]
 [0.90704185]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29598328]
 [0.31221426]
 [0.7199483 ]
 [0.6150262 ]
 [0.7498154 ]
 [0.9071392 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2957586 ]
 [0.31202215]
 [0.71996367]
 [0.61502564]
 [0.7498987 ]
 [0.9072362 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2955343 ]
 [0.31183055]
 [0.7199788 ]
 [0.6150252 ]
 [0.74998194]
 [0.90733296]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29531044]
 [0.31163937]
 [0.7199938 ]
 [0.61502486]
 [0.750065  ]
 [0.9074295 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.295087  ]
 [0.3114487 ]
 [0.7200087 ]
 [0.61502457]
 [0.75014806]
 [0.9075257 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29486397]
 [0.31125832]
 [0.72002333]
 [0.6150244 ]
 [0.7502309 ]
 [0.9076218 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29464138]
 [0.31106848]
 [0.7200379 ]
 [0.6150242 ]
 [0.7503138 ]
 [0.9077174 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29441917]
 [0.31087905]
 [0.7200522 ]
 [0.6150242 ]
 [0.75039655]
 [0.9078129 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29419744]
 [0.31069005]
 [0.7200663 ]
 [0.6150242 ]
 [0.7504791 ]
 [0.90790814]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29397607]
 [0.31050152]
 [0.7200804 ]
 [0.6150243 ]
 [0.7505617 ]
 [0.90800303]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29375505]
 [0.31031337]
 [0.72009414]
 [0.61502445]
 [0.75064415]
 [0.9080977 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29353455]
 [0.31012565]
 [0.7201078 ]
 [0.6150247 ]
 [0.75072646]
 [0.9081922 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2933144 ]
 [0.30993837]
 [0.72012126]
 [0.6150249 ]
 [0.7508087 ]
 [0.9082863 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29309466]
 [0.30975154]
 [0.7201346 ]
 [0.6150253 ]
 [0.75089085]
 [0.9083802 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29287535]
 [0.30956513]
 [0.7201477 ]
 [0.6150257 ]
 [0.7509729 ]
 [0.9084739 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29265642]
 [0.30937913]
 [0.7201607 ]
 [0.61502624]
 [0.75105494]
 [0.90856737]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2924379 ]
 [0.3091936 ]
 [0.7201735 ]
 [0.61502683]
 [0.7511368 ]
 [0.9086605 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29221976]
 [0.30900848]
 [0.7201862 ]
 [0.6150275 ]
 [0.75121856]
 [0.9087534 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29200208]
 [0.30882376]
 [0.72019863]
 [0.6150282 ]
 [0.75130033]
 [0.908846  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29178476]
 [0.30863947]
 [0.7202109 ]
 [0.61502904]
 [0.75138193]
 [0.9089384 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29156786]
 [0.30845562]
 [0.72022307]
 [0.6150299 ]
 [0.7514634 ]
 [0.9090306 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29135132]
 [0.30827212]
 [0.720235  ]
 [0.6150308 ]
 [0.7515449 ]
 [0.9091225 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2911352 ]
 [0.30808908]
 [0.72024685]
 [0.6150318 ]
 [0.7516262 ]
 [0.90921414]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29091948]
 [0.30790645]
 [0.7202585 ]
 [0.61503285]
 [0.7517074 ]
 [0.9093055 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29070413]
 [0.30772424]
 [0.7202699 ]
 [0.6150339 ]
 [0.75178844]
 [0.9093967 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2904892 ]
 [0.30754244]
 [0.72028124]
 [0.6150352 ]
 [0.7518695 ]
 [0.9094876 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.29027462]
 [0.30736104]
 [0.7202924 ]
 [0.6150364 ]
 [0.7519505 ]
 [0.9095782 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2900605 ]
 [0.30718005]
 [0.7203034 ]
 [0.61503774]
 [0.7520313 ]
 [0.90966856]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28984672]
 [0.3069995 ]
 [0.72031426]
 [0.6150391 ]
 [0.7521121 ]
 [0.90975887]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2896334 ]
 [0.30681935]
 [0.72032493]
 [0.6150406 ]
 [0.7521928 ]
 [0.90984875]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28942043]
 [0.3066396 ]
 [0.72033536]
 [0.61504215]
 [0.7522734 ]
 [0.90993845]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28920782]
 [0.30646032]
 [0.72034574]
 [0.6150438 ]
 [0.75235385]
 [0.9100279 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28899562]
 [0.3062814 ]
 [0.720356  ]
 [0.6150455 ]
 [0.7524343 ]
 [0.91011715]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2887838 ]
 [0.30610287]
 [0.720366  ]
 [0.6150472 ]
 [0.75251466]
 [0.91020614]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28857237]
 [0.30592474]
 [0.72037584]
 [0.61504906]
 [0.7525949 ]
 [0.9102949 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2883613 ]
 [0.30574703]
 [0.72038555]
 [0.615051  ]
 [0.75267506]
 [0.91038346]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28815064]
 [0.3055697 ]
 [0.7203951 ]
 [0.6150529 ]
 [0.7527551 ]
 [0.9104717 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28794038]
 [0.30539283]
 [0.72040445]
 [0.6150549 ]
 [0.7528351 ]
 [0.9105597 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28773046]
 [0.30521634]
 [0.7204137 ]
 [0.615057  ]
 [0.75291497]
 [0.9106475 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28752095]
 [0.30504024]
 [0.72042274]
 [0.6150592 ]
 [0.7529947 ]
 [0.910735  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2873118 ]
 [0.30486453]
 [0.7204317 ]
 [0.6150614 ]
 [0.75307447]
 [0.9108224 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28710306]
 [0.30468923]
 [0.72044045]
 [0.6150637 ]
 [0.75315404]
 [0.91090953]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28689468]
 [0.3045143 ]
 [0.72044903]
 [0.61506605]
 [0.7532336 ]
 [0.91099644]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28668666]
 [0.3043397 ]
 [0.72045743]
 [0.61506844]
 [0.753313  ]
 [0.911083  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28647903]
 [0.3041656 ]
 [0.72046566]
 [0.6150709 ]
 [0.75339234]
 [0.91116935]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28627175]
 [0.30399185]
 [0.72047377]
 [0.6150734 ]
 [0.75347155]
 [0.9112556 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28606486]
 [0.3038185 ]
 [0.72048175]
 [0.615076  ]
 [0.7535507 ]
 [0.91134155]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28585833]
 [0.3036455 ]
 [0.72048956]
 [0.61507857]
 [0.7536297 ]
 [0.91142726]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2856522 ]
 [0.30347294]
 [0.72049725]
 [0.61508137]
 [0.7537087 ]
 [0.91151273]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28544644]
 [0.30330074]
 [0.72050476]
 [0.61508423]
 [0.75378764]
 [0.911598  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.285241  ]
 [0.303129  ]
 [0.7205121 ]
 [0.6150871 ]
 [0.7538665 ]
 [0.91168314]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28503597]
 [0.30295753]
 [0.7205193 ]
 [0.61509   ]
 [0.75394523]
 [0.91176796]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
700 0.47200763

hypothesis: [[0.28483132]
 [0.30278653]
 [0.72052634]
 [0.615093  ]
 [0.7540239 ]
 [0.9118526 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28462702]
 [0.30261588]
 [0.72053325]
 [0.61509603]
 [0.7541024 ]
 [0.91193694]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28442305]
 [0.3024456 ]
 [0.7205399 ]
 [0.61509913]
 [0.75418085]
 [0.9120211 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2842195 ]
 [0.30227572]
 [0.72054654]
 [0.6151023 ]
 [0.7542593 ]
 [0.912105  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28401625]
 [0.3021062 ]
 [0.720553  ]
 [0.61510557]
 [0.75433755]
 [0.9121887 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28381342]
 [0.30193704]
 [0.72055924]
 [0.61510885]
 [0.75441575]
 [0.9122723 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28361094]
 [0.30176833]
 [0.7205654 ]
 [0.61511225]
 [0.7544939 ]
 [0.9123555 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2834088 ]
 [0.30159992]
 [0.7205714 ]
 [0.61511564]
 [0.75457186]
 [0.9124386 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28320706]
 [0.30143195]
 [0.7205772 ]
 [0.6151191 ]
 [0.7546498 ]
 [0.9125214 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2830056 ]
 [0.3012643 ]
 [0.72058284]
 [0.6151226 ]
 [0.7547276 ]
 [0.91260403]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28280455]
 [0.30109704]
 [0.7205883 ]
 [0.61512625]
 [0.7548054 ]
 [0.91268647]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28260386]
 [0.30093014]
 [0.7205937 ]
 [0.6151299 ]
 [0.75488305]
 [0.9127686 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28240353]
 [0.30076367]
 [0.72059894]
 [0.6151336 ]
 [0.7549607 ]
 [0.9128506 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28220356]
 [0.3005975 ]
 [0.720604  ]
 [0.6151374 ]
 [0.7550382 ]
 [0.9129324 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28200394]
 [0.30043173]
 [0.72060895]
 [0.6151413 ]
 [0.7551156 ]
 [0.913014  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28180462]
 [0.30026633]
 [0.7206137 ]
 [0.61514515]
 [0.755193  ]
 [0.91309524]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28160572]
 [0.30010128]
 [0.72061837]
 [0.61514914]
 [0.7552702 ]
 [0.91317636]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28140712]
 [0.29993662]
 [0.7206228 ]
 [0.61515313]
 [0.7553474 ]
 [0.9132573 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2812089 ]
 [0.29977226]
 [0.7206271 ]
 [0.6151572 ]
 [0.75542444]
 [0.91333807]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28101102]
 [0.29960835]
 [0.7206313 ]
 [0.61516136]
 [0.7555015 ]
 [0.9134185 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28081346]
 [0.29944474]
 [0.72063535]
 [0.61516553]
 [0.7555784 ]
 [0.91349876]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28061628]
 [0.2992815 ]
 [0.7206393 ]
 [0.61516976]
 [0.75565517]
 [0.91357887]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28041947]
 [0.2991187 ]
 [0.720643  ]
 [0.61517406]
 [0.75573194]
 [0.91365874]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28022295]
 [0.29895616]
 [0.72064656]
 [0.61517847]
 [0.7558086 ]
 [0.91373837]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.28002685]
 [0.29879403]
 [0.72065   ]
 [0.6151829 ]
 [0.7558852 ]
 [0.9138179 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27983105]
 [0.2986322 ]
 [0.7206533 ]
 [0.61518735]
 [0.75596166]
 [0.91389716]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27963555]
 [0.2984708 ]
 [0.72065645]
 [0.6151919 ]
 [0.75603807]
 [0.91397613]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27944046]
 [0.29830968]
 [0.7206595 ]
 [0.61519647]
 [0.75611436]
 [0.914055  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27924567]
 [0.29814905]
 [0.72066236]
 [0.6152012 ]
 [0.75619066]
 [0.91413355]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27905124]
 [0.29798865]
 [0.72066504]
 [0.6152059 ]
 [0.7562668 ]
 [0.9142121 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27885717]
 [0.2978286 ]
 [0.7206676 ]
 [0.6152106 ]
 [0.7563429 ]
 [0.9142903 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27866334]
 [0.29766893]
 [0.72067004]
 [0.6152154 ]
 [0.75641876]
 [0.91436833]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27846992]
 [0.2975096 ]
 [0.72067237]
 [0.61522025]
 [0.75649464]
 [0.9144462 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27827686]
 [0.29735065]
 [0.72067446]
 [0.6152252 ]
 [0.75657046]
 [0.9145237 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2780841 ]
 [0.297192  ]
 [0.7206765 ]
 [0.61523014]
 [0.75664616]
 [0.9146012 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2778917 ]
 [0.29703373]
 [0.7206783 ]
 [0.61523515]
 [0.7567218 ]
 [0.9146784 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2776996 ]
 [0.29687583]
 [0.72068006]
 [0.6152403 ]
 [0.7567974 ]
 [0.9147554 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27750784]
 [0.29671824]
 [0.7206816 ]
 [0.61524546]
 [0.75687283]
 [0.9148323 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27731642]
 [0.296561  ]
 [0.72068304]
 [0.61525065]
 [0.7569483 ]
 [0.91490895]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27712536]
 [0.29640418]
 [0.72068435]
 [0.61525595]
 [0.7570237 ]
 [0.91498536]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2769346 ]
 [0.2962476 ]
 [0.7206855 ]
 [0.61526126]
 [0.7570988 ]
 [0.91506165]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2767442 ]
 [0.29609138]
 [0.7206865 ]
 [0.6152666 ]
 [0.757174  ]
 [0.9151377 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2765541 ]
 [0.29593554]
 [0.72068745]
 [0.61527205]
 [0.75724906]
 [0.9152136 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27636433]
 [0.29578003]
 [0.72068816]
 [0.61527747]
 [0.757324  ]
 [0.91528916]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2761749 ]
 [0.29562485]
 [0.72068876]
 [0.6152831 ]
 [0.7573989 ]
 [0.9153647 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2759858 ]
 [0.29547006]
 [0.7206892 ]
 [0.6152887 ]
 [0.7574739 ]
 [0.9154399 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.275797  ]
 [0.29531556]
 [0.72068954]
 [0.61529434]
 [0.7575486 ]
 [0.91551507]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2756086 ]
 [0.2951614 ]
 [0.7206897 ]
 [0.6153    ]
 [0.75762314]
 [0.91559   ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27542043]
 [0.2950076 ]
 [0.7206897 ]
 [0.6153058 ]
 [0.7576978 ]
 [0.9156647 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27523264]
 [0.29485407]
 [0.7206896 ]
 [0.6153116 ]
 [0.7577723 ]
 [0.9157391 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27504516]
 [0.29470098]
 [0.7206894 ]
 [0.6153175 ]
 [0.75784683]
 [0.9158135 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.274858  ]
 [0.29454812]
 [0.720689  ]
 [0.6153234 ]
 [0.7579211 ]
 [0.9158877 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27467114]
 [0.29439563]
 [0.72068846]
 [0.6153293 ]
 [0.7579953 ]
 [0.91596156]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27448463]
 [0.29424345]
 [0.72068787]
 [0.61533535]
 [0.7580695 ]
 [0.9160353 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27429843]
 [0.2940916 ]
 [0.7206871 ]
 [0.61534137]
 [0.7581436 ]
 [0.91610897]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27411252]
 [0.29394013]
 [0.7206862 ]
 [0.6153475 ]
 [0.75821763]
 [0.9161823 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27392697]
 [0.29378897]
 [0.7206851 ]
 [0.6153537 ]
 [0.75829154]
 [0.91625553]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2737417 ]
 [0.2936381 ]
 [0.7206839 ]
 [0.6153599 ]
 [0.75836545]
 [0.9163285 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27355677]
 [0.29348755]
 [0.72068256]
 [0.61536616]
 [0.75843924]
 [0.9164014 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27337214]
 [0.29333737]
 [0.7206811 ]
 [0.61537254]
 [0.7585129 ]
 [0.9164739 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27318785]
 [0.29318753]
 [0.7206795 ]
 [0.6153789 ]
 [0.7585866 ]
 [0.91654646]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27300385]
 [0.293038  ]
 [0.72067785]
 [0.6153853 ]
 [0.75866014]
 [0.91661876]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27282017]
 [0.29288876]
 [0.72067595]
 [0.61539185]
 [0.7587335 ]
 [0.9166909 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2726368 ]
 [0.29273987]
 [0.7206739 ]
 [0.61539835]
 [0.7588069 ]
 [0.9167628 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27245373]
 [0.29259127]
 [0.7206718 ]
 [0.6154049 ]
 [0.7588802 ]
 [0.91683453]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27227098]
 [0.29244298]
 [0.7206695 ]
 [0.61541146]
 [0.7589534 ]
 [0.916906  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27208853]
 [0.29229504]
 [0.7206671 ]
 [0.61541814]
 [0.7590265 ]
 [0.91697735]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27190644]
 [0.29214746]
 [0.72066456]
 [0.61542493]
 [0.7590996 ]
 [0.91704863]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27172458]
 [0.29200011]
 [0.7206619 ]
 [0.61543167]
 [0.75917256]
 [0.9171196 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2715431 ]
 [0.29185313]
 [0.7206591 ]
 [0.61543846]
 [0.75924546]
 [0.9171905 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2713619 ]
 [0.29170644]
 [0.72065616]
 [0.6154454 ]
 [0.75931835]
 [0.91726124]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27118096]
 [0.29156014]
 [0.7206531 ]
 [0.6154523 ]
 [0.75939107]
 [0.91733164]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27100036]
 [0.29141408]
 [0.7206499 ]
 [0.61545926]
 [0.7594637 ]
 [0.91740197]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2708201 ]
 [0.29126838]
 [0.7206466 ]
 [0.6154663 ]
 [0.7595363 ]
 [0.9174721 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2706401 ]
 [0.291123  ]
 [0.7206431 ]
 [0.61547345]
 [0.7596089 ]
 [0.91754204]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27046043]
 [0.29097787]
 [0.7206396 ]
 [0.6154805 ]
 [0.75968134]
 [0.9176119 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27028102]
 [0.2908331 ]
 [0.7206358 ]
 [0.6154877 ]
 [0.75975364]
 [0.91768146]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.27010196]
 [0.2906886 ]
 [0.720632  ]
 [0.6154949 ]
 [0.759826  ]
 [0.91775095]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26992315]
 [0.29054445]
 [0.720628  ]
 [0.6155022 ]
 [0.7598982 ]
 [0.9178202 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2697447 ]
 [0.29040062]
 [0.7206239 ]
 [0.6155095 ]
 [0.7599703 ]
 [0.91788936]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26956654]
 [0.29025704]
 [0.7206198 ]
 [0.6155169 ]
 [0.7600424 ]
 [0.91795826]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26938862]
 [0.2901138 ]
 [0.7206154 ]
 [0.61552435]
 [0.7601145 ]
 [0.91802704]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26921102]
 [0.28997087]
 [0.7206109 ]
 [0.6155318 ]
 [0.7601863 ]
 [0.9180956 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26903373]
 [0.28982824]
 [0.7206062 ]
 [0.6155393 ]
 [0.7602581 ]
 [0.918164  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26885676]
 [0.2896859 ]
 [0.7206015 ]
 [0.6155468 ]
 [0.76032984]
 [0.91823226]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26868004]
 [0.28954387]
 [0.7205966 ]
 [0.6155544 ]
 [0.7604014 ]
 [0.9183003 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26850367]
 [0.28940216]
 [0.7205916 ]
 [0.615562  ]
 [0.7604731 ]
 [0.91836816]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26832753]
 [0.2892607 ]
 [0.7205864 ]
 [0.6155697 ]
 [0.76054466]
 [0.91843593]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2681517 ]
 [0.2891196 ]
 [0.7205812 ]
 [0.61557746]
 [0.760616  ]
 [0.9185035 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26797616]
 [0.28897876]
 [0.7205758 ]
 [0.61558527]
 [0.7606874 ]
 [0.9185709 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26780096]
 [0.2888383 ]
 [0.7205703 ]
 [0.61559314]
 [0.7607587 ]
 [0.91863817]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26762605]
 [0.2886981 ]
 [0.7205647 ]
 [0.61560106]
 [0.76083   ]
 [0.91870517]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26745135]
 [0.28855816]
 [0.720559  ]
 [0.615609  ]
 [0.7609011 ]
 [0.9187722 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.267277  ]
 [0.28841853]
 [0.7205531 ]
 [0.615617  ]
 [0.7609721 ]
 [0.9188389 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2671029 ]
 [0.28827924]
 [0.7205471 ]
 [0.615625  ]
 [0.7610432 ]
 [0.91890544]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26692915]
 [0.2881402 ]
 [0.720541  ]
 [0.6156331 ]
 [0.76111406]
 [0.9189719 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26675564]
 [0.28800142]
 [0.7205347 ]
 [0.6156412 ]
 [0.76118493]
 [0.9190382 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2665824 ]
 [0.287863  ]
 [0.72052836]
 [0.61564934]
 [0.7612557 ]
 [0.9191042 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26640946]
 [0.28772485]
 [0.7205218 ]
 [0.61565757]
 [0.7613265 ]
 [0.91917014]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26623684]
 [0.28758705]
 [0.7205152 ]
 [0.61566585]
 [0.7613971 ]
 [0.91923594]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
800 0.46088958

hypothesis: [[0.26606447]
 [0.28744948]
 [0.72050846]
 [0.61567414]
 [0.7614676 ]
 [0.9193015 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26589245]
 [0.2873122 ]
 [0.7205016 ]
 [0.6156825 ]
 [0.7615381 ]
 [0.919367  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26572064]
 [0.28717524]
 [0.7204946 ]
 [0.6156909 ]
 [0.7616085 ]
 [0.9194323 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26554912]
 [0.28703853]
 [0.7204875 ]
 [0.6156993 ]
 [0.7616788 ]
 [0.91949743]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2653779 ]
 [0.28690213]
 [0.72048026]
 [0.6157078 ]
 [0.7617491 ]
 [0.9195624 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26520693]
 [0.28676605]
 [0.7204729 ]
 [0.61571634]
 [0.7618193 ]
 [0.91962713]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26503628]
 [0.2866302 ]
 [0.72046536]
 [0.6157249 ]
 [0.7618894 ]
 [0.9196918 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26486593]
 [0.28649467]
 [0.7204578 ]
 [0.61573356]
 [0.76195943]
 [0.9197563 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26469582]
 [0.28635943]
 [0.72045004]
 [0.6157422 ]
 [0.76202935]
 [0.91982067]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.264526  ]
 [0.28622448]
 [0.7204423 ]
 [0.6157509 ]
 [0.76209927]
 [0.9198849 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26435643]
 [0.28608978]
 [0.72043425]
 [0.6157597 ]
 [0.7621691 ]
 [0.9199489 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26418713]
 [0.28595537]
 [0.72042614]
 [0.61576843]
 [0.76223886]
 [0.9200127 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26401812]
 [0.28582123]
 [0.7204179 ]
 [0.61577725]
 [0.7623085 ]
 [0.92007643]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26384938]
 [0.2856874 ]
 [0.72040963]
 [0.6157861 ]
 [0.76237804]
 [0.92013997]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26368096]
 [0.28555384]
 [0.72040117]
 [0.615795  ]
 [0.76244754]
 [0.92020345]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2635128 ]
 [0.28542057]
 [0.7203925 ]
 [0.61580396]
 [0.76251704]
 [0.9202667 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26334488]
 [0.28528756]
 [0.7203839 ]
 [0.61581296]
 [0.76258636]
 [0.92032975]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26317728]
 [0.28515488]
 [0.72037506]
 [0.615822  ]
 [0.7626558 ]
 [0.9203927 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2630099 ]
 [0.2850224 ]
 [0.7203661 ]
 [0.6158311 ]
 [0.76272494]
 [0.9204555 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26284277]
 [0.28489023]
 [0.72035706]
 [0.6158402 ]
 [0.7627941 ]
 [0.9205181 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.262676  ]
 [0.28475833]
 [0.72034794]
 [0.6158494 ]
 [0.76286316]
 [0.9205806 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26250944]
 [0.28462672]
 [0.72033864]
 [0.61585855]
 [0.7629321 ]
 [0.920643  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26234317]
 [0.2844954 ]
 [0.7203292 ]
 [0.61586785]
 [0.76300114]
 [0.92070514]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26217714]
 [0.2843643 ]
 [0.7203197 ]
 [0.6158771 ]
 [0.76307   ]
 [0.9207672 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2620114 ]
 [0.28423354]
 [0.7203101 ]
 [0.61588645]
 [0.76313883]
 [0.92082906]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26184592]
 [0.284103  ]
 [0.7203003 ]
 [0.61589587]
 [0.76320755]
 [0.9208908 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26168072]
 [0.2839728 ]
 [0.7202905 ]
 [0.6159053 ]
 [0.7632762 ]
 [0.9209525 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26151577]
 [0.28384283]
 [0.7202804 ]
 [0.6159147 ]
 [0.76334476]
 [0.92101383]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2613511 ]
 [0.2837131 ]
 [0.7202704 ]
 [0.61592424]
 [0.76341325]
 [0.92107517]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2611867 ]
 [0.2835837 ]
 [0.72026014]
 [0.6159338 ]
 [0.7634818 ]
 [0.9211363 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26102257]
 [0.28345454]
 [0.72024983]
 [0.6159434 ]
 [0.76355016]
 [0.9211973 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26085865]
 [0.2833256 ]
 [0.72023934]
 [0.61595297]
 [0.7636184 ]
 [0.92125815]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.260695  ]
 [0.28319705]
 [0.72022873]
 [0.6159627 ]
 [0.7636867 ]
 [0.9213188 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26053166]
 [0.28306866]
 [0.72021806]
 [0.61597234]
 [0.76375484]
 [0.92137945]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26036856]
 [0.28294057]
 [0.72020733]
 [0.6159821 ]
 [0.7638229 ]
 [0.9214399 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26020575]
 [0.28281277]
 [0.7201964 ]
 [0.61599195]
 [0.7638909 ]
 [0.9215001 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.26004314]
 [0.28268522]
 [0.7201854 ]
 [0.6160017 ]
 [0.763959  ]
 [0.9215602 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25988084]
 [0.2825579 ]
 [0.72017425]
 [0.6160116 ]
 [0.7640268 ]
 [0.92162025]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25971878]
 [0.28243095]
 [0.72016305]
 [0.6160216 ]
 [0.76409465]
 [0.9216801 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.259557  ]
 [0.2823041 ]
 [0.72015166]
 [0.6160315 ]
 [0.7641625 ]
 [0.9217399 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25939548]
 [0.28217763]
 [0.72014016]
 [0.6160415 ]
 [0.76423013]
 [0.9217994 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2592342 ]
 [0.28205144]
 [0.72012854]
 [0.61605155]
 [0.7642977 ]
 [0.9218588 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25907314]
 [0.28192544]
 [0.7201168 ]
 [0.61606157]
 [0.76436526]
 [0.92191803]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25891235]
 [0.28179967]
 [0.720105  ]
 [0.61607164]
 [0.76443267]
 [0.9219772 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25875184]
 [0.2816742 ]
 [0.7200931 ]
 [0.6160818 ]
 [0.7645    ]
 [0.92203623]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25859156]
 [0.28154904]
 [0.72008103]
 [0.616092  ]
 [0.7645674 ]
 [0.9220951 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25843155]
 [0.2814241 ]
 [0.72006893]
 [0.6161022 ]
 [0.76463467]
 [0.9221538 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2582718 ]
 [0.2812994 ]
 [0.72005665]
 [0.61611253]
 [0.76470184]
 [0.92221236]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2581123 ]
 [0.28117496]
 [0.72004426]
 [0.61612284]
 [0.7647691 ]
 [0.9222708 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25795305]
 [0.28105086]
 [0.7200318 ]
 [0.61613315]
 [0.76483613]
 [0.92232907]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25779405]
 [0.28092694]
 [0.7200192 ]
 [0.6161436 ]
 [0.76490307]
 [0.9223873 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2576353 ]
 [0.28080323]
 [0.72000647]
 [0.61615396]
 [0.76497   ]
 [0.9224453 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25747684]
 [0.28067982]
 [0.7199936 ]
 [0.6161644 ]
 [0.7650369 ]
 [0.9225032 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2573186 ]
 [0.28055674]
 [0.7199807 ]
 [0.61617494]
 [0.76510364]
 [0.922561  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2571606 ]
 [0.2804339 ]
 [0.71996766]
 [0.6161855 ]
 [0.76517045]
 [0.9226185 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25700283]
 [0.2803112 ]
 [0.7199545 ]
 [0.61619604]
 [0.76523703]
 [0.922676  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25684536]
 [0.28018883]
 [0.71994126]
 [0.61620665]
 [0.7653036 ]
 [0.92273337]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25668812]
 [0.28006667]
 [0.7199279 ]
 [0.61621726]
 [0.76537013]
 [0.92279065]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25653112]
 [0.27994484]
 [0.71991444]
 [0.61622804]
 [0.7654366 ]
 [0.9228477 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25637436]
 [0.27982318]
 [0.7199008 ]
 [0.6162387 ]
 [0.7655029 ]
 [0.9229047 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25621778]
 [0.27970177]
 [0.71988714]
 [0.61624944]
 [0.76556927]
 [0.9229614 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25606158]
 [0.27958065]
 [0.7198733 ]
 [0.6162603 ]
 [0.76563555]
 [0.9230181 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2559055 ]
 [0.27945977]
 [0.7198594 ]
 [0.61627114]
 [0.76570165]
 [0.92307466]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25574976]
 [0.27933908]
 [0.71984535]
 [0.616282  ]
 [0.7657679 ]
 [0.92313105]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2555942 ]
 [0.27921873]
 [0.7198312 ]
 [0.61629295]
 [0.7658339 ]
 [0.9231873 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25543886]
 [0.27909857]
 [0.71981704]
 [0.6163039 ]
 [0.76589996]
 [0.9232435 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25528383]
 [0.2789787 ]
 [0.7198027 ]
 [0.6163149 ]
 [0.7659658 ]
 [0.9232995 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.255129  ]
 [0.27885902]
 [0.7197882 ]
 [0.61632586]
 [0.76603174]
 [0.9233554 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25497448]
 [0.2787396 ]
 [0.71977365]
 [0.61633694]
 [0.7660975 ]
 [0.9234112 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25482017]
 [0.27862042]
 [0.719759  ]
 [0.6163481 ]
 [0.7661632 ]
 [0.9234668 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25466606]
 [0.2785015 ]
 [0.7197442 ]
 [0.6163592 ]
 [0.7662289 ]
 [0.9235223 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2545122 ]
 [0.27838278]
 [0.7197293 ]
 [0.6163703 ]
 [0.7662944 ]
 [0.9235776 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2543586 ]
 [0.27826437]
 [0.7197143 ]
 [0.6163815 ]
 [0.7663599 ]
 [0.9236329 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25420517]
 [0.27814615]
 [0.7196992 ]
 [0.61639273]
 [0.7664254 ]
 [0.92368793]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2540521 ]
 [0.27802825]
 [0.719684  ]
 [0.61640406]
 [0.7664908 ]
 [0.923743  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25389916]
 [0.2779105 ]
 [0.71966875]
 [0.6164153 ]
 [0.7665561 ]
 [0.92379785]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2537465 ]
 [0.27779302]
 [0.7196533 ]
 [0.6164267 ]
 [0.7666213 ]
 [0.92385256]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2535941 ]
 [0.2776758 ]
 [0.7196378 ]
 [0.61643815]
 [0.7666866 ]
 [0.9239072 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25344193]
 [0.2775588 ]
 [0.7196222 ]
 [0.61644953]
 [0.7667517 ]
 [0.92396164]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25329   ]
 [0.27744204]
 [0.71960646]
 [0.616461  ]
 [0.76681674]
 [0.924016  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25313824]
 [0.2773255 ]
 [0.71959066]
 [0.6164725 ]
 [0.76688176]
 [0.9240701 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2529868 ]
 [0.27720922]
 [0.71957475]
 [0.61648405]
 [0.76694673]
 [0.9241243 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2528355 ]
 [0.27709317]
 [0.71955866]
 [0.61649555]
 [0.7670116 ]
 [0.92417824]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25268447]
 [0.2769774 ]
 [0.71954256]
 [0.6165072 ]
 [0.76707643]
 [0.9242321 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2525337 ]
 [0.2768618 ]
 [0.7195263 ]
 [0.6165188 ]
 [0.76714116]
 [0.9242859 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25238317]
 [0.27674645]
 [0.71950996]
 [0.6165305 ]
 [0.7672059 ]
 [0.9243395 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25223282]
 [0.27663136]
 [0.7194935 ]
 [0.61654216]
 [0.76727045]
 [0.92439294]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2520827 ]
 [0.27651644]
 [0.719477  ]
 [0.6165539 ]
 [0.76733506]
 [0.92444634]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25193286]
 [0.27640182]
 [0.7194603 ]
 [0.6165657 ]
 [0.76739955]
 [0.9244995 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2517832 ]
 [0.27628738]
 [0.71944356]
 [0.6165775 ]
 [0.7674639 ]
 [0.92455256]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25163376]
 [0.27617323]
 [0.7194267 ]
 [0.61658937]
 [0.76752836]
 [0.92460555]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25148463]
 [0.27605924]
 [0.7194097 ]
 [0.6166012 ]
 [0.7675926 ]
 [0.92465836]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25133568]
 [0.27594554]
 [0.71939266]
 [0.6166131 ]
 [0.7676568 ]
 [0.92471117]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25118694]
 [0.27583203]
 [0.7193755 ]
 [0.6166251 ]
 [0.76772106]
 [0.9247638 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25103843]
 [0.27571872]
 [0.71935827]
 [0.616637  ]
 [0.7677851 ]
 [0.92481625]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25089014]
 [0.27560568]
 [0.7193409 ]
 [0.616649  ]
 [0.7678491 ]
 [0.9248687 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2507421 ]
 [0.27549288]
 [0.7193234 ]
 [0.616661  ]
 [0.76791316]
 [0.9249209 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25059426]
 [0.27538028]
 [0.7193059 ]
 [0.6166731 ]
 [0.76797706]
 [0.92497313]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25044668]
 [0.27526796]
 [0.7192882 ]
 [0.6166853 ]
 [0.76804096]
 [0.92502505]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25029933]
 [0.27515584]
 [0.71927047]
 [0.61669743]
 [0.76810473]
 [0.9250771 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
900 0.45088795

hypothesis: [[0.25015217]
 [0.2750439 ]
 [0.7192526 ]
 [0.6167096 ]
 [0.7681685 ]
 [0.92512876]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.25000522]
 [0.27493224]
 [0.7192346 ]
 [0.6167218 ]
 [0.76823217]
 [0.92518044]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24985853]
 [0.27482074]
 [0.71921647]
 [0.616734  ]
 [0.76829576]
 [0.92523193]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24971205]
 [0.27470952]
 [0.7191983 ]
 [0.6167463 ]
 [0.76835924]
 [0.9252834 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24956578]
 [0.2745985 ]
 [0.71918   ]
 [0.6167586 ]
 [0.7684227 ]
 [0.9253347 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24941972]
 [0.2744877 ]
 [0.7191616 ]
 [0.6167709 ]
 [0.76848614]
 [0.92538583]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24927393]
 [0.27437717]
 [0.71914315]
 [0.61678326]
 [0.7685495 ]
 [0.92543703]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24912834]
 [0.27426678]
 [0.71912456]
 [0.61679566]
 [0.7686128 ]
 [0.92548794]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2489829 ]
 [0.2741567 ]
 [0.71910596]
 [0.6168081 ]
 [0.76867604]
 [0.9255388 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24883777]
 [0.27404678]
 [0.7190872 ]
 [0.6168206 ]
 [0.76873916]
 [0.92558944]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24869278]
 [0.27393705]
 [0.7190683 ]
 [0.61683303]
 [0.7688023 ]
 [0.9256401 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24854809]
 [0.2738276 ]
 [0.71904933]
 [0.61684555]
 [0.7688653 ]
 [0.9256906 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24840358]
 [0.27371836]
 [0.71903026]
 [0.6168581 ]
 [0.7689283 ]
 [0.92574096]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24825928]
 [0.27360934]
 [0.7190112 ]
 [0.61687076]
 [0.76899123]
 [0.9257913 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24811521]
 [0.27350056]
 [0.71899194]
 [0.61688346]
 [0.7690541 ]
 [0.92584145]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24797139]
 [0.27339196]
 [0.71897256]
 [0.61689615]
 [0.76911706]
 [0.92589146]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24782771]
 [0.2732836 ]
 [0.71895313]
 [0.61690885]
 [0.7691797 ]
 [0.9259414 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24768427]
 [0.27317548]
 [0.7189336 ]
 [0.61692154]
 [0.7692425 ]
 [0.9259912 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2475411 ]
 [0.27306747]
 [0.718914  ]
 [0.6169343 ]
 [0.7693051 ]
 [0.926041  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24739805]
 [0.27295977]
 [0.7188942 ]
 [0.6169471 ]
 [0.7693677 ]
 [0.92609054]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2472553 ]
 [0.27285224]
 [0.7188744 ]
 [0.6169599 ]
 [0.76943016]
 [0.92614007]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24711269]
 [0.272745  ]
 [0.7188545 ]
 [0.6169728 ]
 [0.7694926 ]
 [0.9261894 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24697036]
 [0.27263793]
 [0.71883446]
 [0.61698574]
 [0.76955503]
 [0.92623866]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24682823]
 [0.2725311 ]
 [0.7188144 ]
 [0.6169987 ]
 [0.7696174 ]
 [0.92628783]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24668628]
 [0.27242443]
 [0.71879417]
 [0.6170116 ]
 [0.76967967]
 [0.92633694]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24654457]
 [0.27231795]
 [0.71877384]
 [0.6170246 ]
 [0.7697419 ]
 [0.9263858 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24640301]
 [0.27221176]
 [0.71875346]
 [0.61703765]
 [0.76980406]
 [0.92643464]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24626172]
 [0.2721057 ]
 [0.71873295]
 [0.61705065]
 [0.76986617]
 [0.92648345]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2461206 ]
 [0.2719999 ]
 [0.7187124 ]
 [0.61706376]
 [0.7699282 ]
 [0.9265319 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24597976]
 [0.27189428]
 [0.7186917 ]
 [0.6170769 ]
 [0.7699902 ]
 [0.9265804 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24583903]
 [0.2717889 ]
 [0.7186709 ]
 [0.61709005]
 [0.7700521 ]
 [0.9266289 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24569854]
 [0.2716837 ]
 [0.7186501 ]
 [0.61710316]
 [0.7701139 ]
 [0.92667717]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24555832]
 [0.27157873]
 [0.7186291 ]
 [0.6171164 ]
 [0.77017576]
 [0.92672527]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24541828]
 [0.27147397]
 [0.718608  ]
 [0.6171296 ]
 [0.7702375 ]
 [0.9267734 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24527842]
 [0.2713694 ]
 [0.7185869 ]
 [0.61714286]
 [0.7702991 ]
 [0.92682135]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24513873]
 [0.27126503]
 [0.71856564]
 [0.61715615]
 [0.77036077]
 [0.92686915]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24499935]
 [0.2711609 ]
 [0.7185443 ]
 [0.6171695 ]
 [0.77042234]
 [0.9269169 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24486008]
 [0.27105698]
 [0.7185229 ]
 [0.6171829 ]
 [0.7704839 ]
 [0.92696464]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24472108]
 [0.27095324]
 [0.7185014 ]
 [0.6171963 ]
 [0.7705453 ]
 [0.92701215]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24458224]
 [0.2708497 ]
 [0.71847975]
 [0.6172097 ]
 [0.7706067 ]
 [0.9270595 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24444363]
 [0.27074635]
 [0.71845806]
 [0.61722314]
 [0.7706681 ]
 [0.9271068 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2443052 ]
 [0.27064323]
 [0.71843624]
 [0.6172366 ]
 [0.77072924]
 [0.92715406]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.244167  ]
 [0.27054033]
 [0.71841437]
 [0.6172501 ]
 [0.7707905 ]
 [0.9272012 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24402893]
 [0.2704376 ]
 [0.7183924 ]
 [0.6172636 ]
 [0.7708517 ]
 [0.92724824]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24389115]
 [0.27033508]
 [0.7183703 ]
 [0.61727715]
 [0.77091277]
 [0.9272951 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24375352]
 [0.2702327 ]
 [0.71834815]
 [0.61729074]
 [0.7709738 ]
 [0.9273418 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2436161 ]
 [0.2701306 ]
 [0.7183259 ]
 [0.6173043 ]
 [0.7710347 ]
 [0.92738855]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24347895]
 [0.2700287 ]
 [0.71830344]
 [0.617318  ]
 [0.7710957 ]
 [0.9274351 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24334192]
 [0.26992702]
 [0.7182811 ]
 [0.61733174]
 [0.77115667]
 [0.92748165]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24320507]
 [0.26982546]
 [0.7182585 ]
 [0.6173454 ]
 [0.77121735]
 [0.927528  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24306843]
 [0.26972413]
 [0.71823585]
 [0.6173591 ]
 [0.77127814]
 [0.9275743 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24293202]
 [0.26962304]
 [0.71821314]
 [0.6173729 ]
 [0.7713388 ]
 [0.9276204 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2427958 ]
 [0.26952207]
 [0.7181904 ]
 [0.61738664]
 [0.77139944]
 [0.9276665 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24265978]
 [0.26942134]
 [0.7181674 ]
 [0.61740047]
 [0.77146006]
 [0.92771244]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24252397]
 [0.26932085]
 [0.7181445 ]
 [0.6174143 ]
 [0.77152056]
 [0.92775846]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24238831]
 [0.2692205 ]
 [0.7181214 ]
 [0.6174282 ]
 [0.77158093]
 [0.9278042 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24225295]
 [0.26912045]
 [0.7180983 ]
 [0.6174421 ]
 [0.77164143]
 [0.9278499 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2421177 ]
 [0.26902044]
 [0.71807504]
 [0.617456  ]
 [0.77170175]
 [0.9278954 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24198267]
 [0.26892072]
 [0.7180517 ]
 [0.61746997]
 [0.771762  ]
 [0.9279409 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24184781]
 [0.26882115]
 [0.7180283 ]
 [0.6174839 ]
 [0.7718223 ]
 [0.92798626]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24171314]
 [0.26872176]
 [0.7180047 ]
 [0.6174979 ]
 [0.7718825 ]
 [0.92803156]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24157873]
 [0.26862264]
 [0.7179811 ]
 [0.617512  ]
 [0.7719426 ]
 [0.92807674]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24144447]
 [0.2685237 ]
 [0.7179574 ]
 [0.6175261 ]
 [0.77200276]
 [0.9281218 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24131039]
 [0.26842496]
 [0.71793365]
 [0.61754024]
 [0.7720628 ]
 [0.9281668 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24117652]
 [0.26832634]
 [0.7179098 ]
 [0.6175543 ]
 [0.7721227 ]
 [0.9282117 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24104282]
 [0.268228  ]
 [0.71788585]
 [0.6175685 ]
 [0.7721825 ]
 [0.92825645]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24090937]
 [0.26812977]
 [0.7178618 ]
 [0.6175827 ]
 [0.7722424 ]
 [0.92830116]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24077603]
 [0.26803178]
 [0.71783763]
 [0.61759686]
 [0.77230227]
 [0.92834574]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24064296]
 [0.267934  ]
 [0.71781343]
 [0.61761117]
 [0.77236205]
 [0.9283902 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24051002]
 [0.2678364 ]
 [0.7177892 ]
 [0.6176254 ]
 [0.7724217 ]
 [0.9284346 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2403773 ]
 [0.26773894]
 [0.71776474]
 [0.6176397 ]
 [0.7724813 ]
 [0.9284789 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24024478]
 [0.2676417 ]
 [0.71774024]
 [0.6176541 ]
 [0.7725409 ]
 [0.92852306]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.24011245]
 [0.26754463]
 [0.7177157 ]
 [0.6176684 ]
 [0.7726004 ]
 [0.9285672 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23998028]
 [0.26744783]
 [0.7176911 ]
 [0.6176828 ]
 [0.7726599 ]
 [0.9286113 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23984832]
 [0.26735115]
 [0.7176664 ]
 [0.61769724]
 [0.7727193 ]
 [0.92865515]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23971656]
 [0.2672546 ]
 [0.71764153]
 [0.61771166]
 [0.7727787 ]
 [0.92869896]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23958492]
 [0.26715833]
 [0.71761656]
 [0.6177261 ]
 [0.77283794]
 [0.92874265]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23945355]
 [0.26706225]
 [0.7175915 ]
 [0.6177406 ]
 [0.77289724]
 [0.9287863 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23932233]
 [0.26696628]
 [0.7175665 ]
 [0.61775506]
 [0.7729564 ]
 [0.92882985]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2391913 ]
 [0.26687056]
 [0.7175413 ]
 [0.61776966]
 [0.77301556]
 [0.92887324]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23906043]
 [0.26677498]
 [0.71751606]
 [0.61778414]
 [0.7730746 ]
 [0.9289166 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23892978]
 [0.26667958]
 [0.71749073]
 [0.6177988 ]
 [0.77313364]
 [0.92895985]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2387993 ]
 [0.2665844 ]
 [0.7174653 ]
 [0.6178134 ]
 [0.77319264]
 [0.929003  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23866901]
 [0.2664894 ]
 [0.7174398 ]
 [0.617828  ]
 [0.7732516 ]
 [0.9290461 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23853892]
 [0.26639456]
 [0.7174142 ]
 [0.6178427 ]
 [0.7733104 ]
 [0.9290891 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23840898]
 [0.26629996]
 [0.7173885 ]
 [0.6178574 ]
 [0.77336925]
 [0.9291319 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23827925]
 [0.26620543]
 [0.71736276]
 [0.6178722 ]
 [0.773428  ]
 [0.9291747 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2381497 ]
 [0.2661112 ]
 [0.7173369 ]
 [0.6178869 ]
 [0.7734868 ]
 [0.92921746]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23802036]
 [0.26601714]
 [0.717311  ]
 [0.6179017 ]
 [0.7735454 ]
 [0.92925996]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23789114]
 [0.26592326]
 [0.717285  ]
 [0.6179165 ]
 [0.77360404]
 [0.92930245]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23776215]
 [0.26582947]
 [0.71725893]
 [0.6179313 ]
 [0.77366257]
 [0.929345  ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23763332]
 [0.26573595]
 [0.7172327 ]
 [0.61794615]
 [0.773721  ]
 [0.9293872 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23750466]
 [0.26564255]
 [0.7172064 ]
 [0.61796105]
 [0.77377945]
 [0.92942953]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23737621]
 [0.26554942]
 [0.71718   ]
 [0.61797595]
 [0.77383786]
 [0.9294717 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23724794]
 [0.26545638]
 [0.71715367]
 [0.61799085]
 [0.77389616]
 [0.9295137 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23711982]
 [0.26536354]
 [0.71712714]
 [0.6180059 ]
 [0.7739545 ]
 [0.9295557 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23699185]
 [0.26527092]
 [0.71710056]
 [0.61802083]
 [0.7740127 ]
 [0.9295975 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23686418]
 [0.26517844]
 [0.7170739 ]
 [0.61803585]
 [0.77407086]
 [0.92963934]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.2367366 ]
 [0.2650861 ]
 [0.7170471 ]
 [0.61805093]
 [0.77412903]
 [0.92968106]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333

hypothesis: [[0.23660925]
 [0.26499403]
 [0.7170203 ]
 [0.61806595]
 [0.7741871 ]
 [0.9297226 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
1000 0.44170213

hypothesis: [[0.236482  ]
 [0.2649021 ]
 [0.71699333]
 [0.61808103]
 [0.7742451 ]
 [0.9297641 ]] 
predicted: [[0.]
 [0.]
 [1.]
 [1.]
 [1.]
 [1.]] 
accuracy: 0.8333333
In [17]:
# 실습
xy = np.loadtxt('./dataset/data-03-diabetes.csv', delimiter=','
                , dtype=np.float32)
x = xy[:,0:-1]
y =xy[:,[-1]]

print(x.shape, y.shape)
 
(759, 8) (759, 1)
In [18]:
X = tf.placeholder(tf.float32, shape=[None, 8])
Y = tf.placeholder(tf.float32, shape=[None, 1])

W = tf.Variable(tf.random_normal([8,1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')

hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate = 0.01).minimize(cost)

predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.cast(tf.equal(predicted, Y), dtype=tf.float32)
In [22]:
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    
    feed = {X:x, Y:y}
    for step in range(1001):
        sess.run(train, feed_dict = feed)
        if step % 200 == 0:
            print(step, sess.run(cost, feed_dict=feed))
        
        h, c, a = sess.run([hypothesis, predicted, accuracy], feed_dict=feed)
        hca = [h, c, a]
 
0 1.0444983
200 0.780901
400 0.72328484
600 0.69887966
800 0.6810927
1000 0.6654639
In [ ]:
 

댓글