In [11]:
import tensorflow as tf
import numpy as np
In [12]:
xy = np.loadtxt('./dataset/pass.csv', delimiter=',', dtype=np.float32)
In [13]:
x = xy[:,0:-1]
y = xy[:,[-1]]
In [14]:
print(x.shape, y.shape)
(6, 2) (6, 1)
In [15]:
X = tf.placeholder(tf.float32, shape=[None, 2])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([2,1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
# sigmoid fnc. 의 cost fnc.
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) *
tf.log(1-hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
# tf.cast : 부동소수점을 버린다.(1,0으로 표현한다)
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
# tf.equal을 통해 predicted와 Y를 비교한다.
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))
In [16]:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(1001):
cost_val, _ = sess.run([cost, train], feed_dict={X:x, Y:y})
if step % 100 == 0:
print(step, cost_val)
h, c, a = sess.run([hypothesis, predicted, accuracy]
, feed_dict={X:x, Y:y})
print("\nhypothesis:",h,'\npredicted:',c, '\naccuracy:',a)
0 1.9660257
hypothesis: [[0.25650516]
[0.11951312]
[0.13775477]
[0.04179943]
[0.02413322]
[0.01980096]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.26602328]
[0.12856945]
[0.14799857]
[0.04728255]
[0.02797878]
[0.02323315]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.27564895]
[0.13809416]
[0.15875396]
[0.05337775]
[0.03236889]
[0.02720201]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.2853612 ]
[0.14807808]
[0.1700089 ]
[0.06012776]
[0.03736173]
[0.03177408]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.29513744]
[0.15850693]
[0.18174523]
[0.06757224]
[0.04301649]
[0.03701904]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.30495352]
[0.16936034]
[0.1939384 ]
[0.07574609]
[0.04939191]
[0.04300839]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.31478405]
[0.18061203]
[0.20655733]
[0.08467826]
[0.05654448]
[0.0498135 ]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.3246026 ]
[0.19222957]
[0.21956435]
[0.09438908]
[0.06452614]
[0.0575032 ]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.3343817 ]
[0.20417449]
[0.2329154 ]
[0.10488904]
[0.07338184]
[0.0661412 ]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.34409335]
[0.21640274]
[0.24656054]
[0.11617684]
[0.08314693]
[0.07578258]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.3537094 ]
[0.22886509]
[0.26044458]
[0.12823829]
[0.09384435]
[0.08647058]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.3632017 ]
[0.24150783]
[0.27450794]
[0.14104491]
[0.10548226]
[0.09823301]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.37254268]
[0.2542737 ]
[0.2886877 ]
[0.15455356]
[0.11805151]
[0.11107907]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.38170567]
[0.2671033 ]
[0.302919 ]
[0.1687069 ]
[0.13152467]
[0.12499662]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.39066544]
[0.279936 ]
[0.3171363 ]
[0.18343392]
[0.14585468]
[0.13995047]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.39939845]
[0.29271105]
[0.3312747 ]
[0.19865161]
[0.16097547]
[0.15588155]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.4078834 ]
[0.30536956]
[0.34527168]
[0.21426743]
[0.17680311]
[0.17270757]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.41610143]
[0.31785527]
[0.3590681 ]
[0.2301816 ]
[0.19323799]
[0.19032511]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.42403638]
[0.33011568]
[0.37260956]
[0.2462905 ]
[0.21016818]
[0.20861268]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.43167514]
[0.34210318]
[0.38584712]
[0.26248968]
[0.22747311]
[0.22743508]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.4390074 ]
[0.35377574]
[0.3987383 ]
[0.27867696]
[0.24502786]
[0.24664855]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.44602603]
[0.3650974 ]
[0.4112473 ]
[0.29475525]
[0.2627071 ]
[0.26610586]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.45272672]
[0.37603852]
[0.4233452 ]
[0.31063485]
[0.28038937]
[0.2856615 ]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.459108 ]
[0.38657564]
[0.43500996]
[0.3262351 ]
[0.29796025]
[0.30517638]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.46517092]
[0.39669162]
[0.44622597]
[0.34148586]
[0.31531537]
[0.32452166]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.47091874]
[0.40637496]
[0.45698372]
[0.35632783]
[0.33236188]
[0.34358165]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.4763568 ]
[0.4156194 ]
[0.4672792 ]
[0.3707128 ]
[0.34902015]
[0.36225566]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.48149207]
[0.42442346]
[0.47711313]
[0.38460332]
[0.36522394]
[0.380459 ]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.48633292]
[0.4327897 ]
[0.48649043]
[0.39797208]
[0.38092026]
[0.39812312]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.4908888 ]
[0.4407242 ]
[0.49541938]
[0.41080076]
[0.3960688 ]
[0.415195 ]]
predicted: [[0.]
[0.]
[0.]
[0.]
[0.]
[0.]]
accuracy: 0.5
hypothesis: [[0.49516997]
[0.44823575]
[0.5039111 ]
[0.4230793 ]
[0.4106408 ]
[0.4316359 ]]
predicted: [[0.]
[0.]
[1.]
[0.]
[0.]
[0.]]
accuracy: 0.33333334
hypothesis: [[0.49918726]
[0.45533556]
[0.5119788 ]
[0.43480465]
[0.42461795]
[0.4474203 ]]
predicted: [[0.]
[0.]
[1.]
[0.]
[0.]
[0.]]
accuracy: 0.33333334
hypothesis: [[0.50295186]
[0.46203646]
[0.51963735]
[0.4459796 ]
[0.4379911 ]
[0.46253383]]
predicted: [[1.]
[0.]
[1.]
[0.]
[0.]
[0.]]
accuracy: 0.16666667
hypothesis: [[0.5064751 ]
[0.4683527 ]
[0.5269028 ]
[0.45661187]
[0.45075867]
[0.47697213]]
predicted: [[1.]
[0.]
[1.]
[0.]
[0.]
[0.]]
accuracy: 0.16666667
hypothesis: [[0.50976837]
[0.47429928]
[0.5337918 ]
[0.4667131 ]
[0.46292555]
[0.49073866]]
predicted: [[1.]
[0.]
[1.]
[0.]
[0.]
[0.]]
accuracy: 0.16666667
hypothesis: [[0.512843 ]
[0.47989187]
[0.5403215 ]
[0.47629791]
[0.47450185]
[0.50384355]]
predicted: [[1.]
[0.]
[1.]
[0.]
[0.]
[1.]]
accuracy: 0.33333334
hypothesis: [[0.51571 ]
[0.48514634]
[0.54650927]
[0.4853833 ]
[0.48550174]
[0.5163023 ]]
predicted: [[1.]
[0.]
[1.]
[0.]
[0.]
[1.]]
accuracy: 0.33333334
hypothesis: [[0.5183801 ]
[0.49007863]
[0.552372 ]
[0.49398777]
[0.49594265]
[0.52813405]]
predicted: [[1.]
[0.]
[1.]
[0.]
[0.]
[1.]]
accuracy: 0.33333334
hypothesis: [[0.52086383]
[0.49470443]
[0.55792654]
[0.5021309 ]
[0.50584406]
[0.5393612 ]]
predicted: [[1.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.5231712 ]
[0.49903923]
[0.5631893 ]
[0.50983304]
[0.51522714]
[0.5500078 ]]
predicted: [[1.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.52531177]
[0.5030981 ]
[0.56817615]
[0.5171146 ]
[0.52411413]
[0.56009936]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5272948 ]
[0.5068955 ]
[0.5729023 ]
[0.52399594]
[0.5325276 ]
[0.569662 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.529129 ]
[0.51044554]
[0.57738227]
[0.5304973 ]
[0.5404904 ]
[0.578722 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53082275]
[0.51376164]
[0.58163005]
[0.5366383 ]
[0.5480251 ]
[0.5873055 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53238386]
[0.51685655]
[0.5856588 ]
[0.54243815]
[0.5551539 ]
[0.59543806]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53381985]
[0.51974255]
[0.58948106]
[0.5479152 ]
[0.56189847]
[0.6031445 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5351378 ]
[0.5224312 ]
[0.59310865]
[0.5530871 ]
[0.56827956]
[0.6104491 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53634423]
[0.52493346]
[0.59655285]
[0.5579709 ]
[0.57431734]
[0.6173746 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53744555]
[0.52725977]
[0.59982413]
[0.5625825 ]
[0.58003104]
[0.62394315]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5384476 ]
[0.5294199 ]
[0.6029325 ]
[0.56693727]
[0.58543885]
[0.63017565]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.539356 ]
[0.5314232 ]
[0.6058873 ]
[0.57104975]
[0.5905583 ]
[0.63609207]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.540176 ]
[0.5332784 ]
[0.6086973 ]
[0.57493365]
[0.5954059 ]
[0.64171094]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54091245]
[0.53499377]
[0.61137074]
[0.5786019 ]
[0.59999716]
[0.6470502 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5415701 ]
[0.536577 ]
[0.61391544]
[0.5820668 ]
[0.6043468 ]
[0.6521264 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54215336]
[0.5380356 ]
[0.61633873]
[0.5853397 ]
[0.6084689 ]
[0.65695524]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54266626]
[0.53937626]
[0.6186474 ]
[0.58843166]
[0.6123765 ]
[0.6615515 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5431127 ]
[0.5406056 ]
[0.6208478 ]
[0.5913528 ]
[0.61608183]
[0.6659289 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5434963 ]
[0.5417298 ]
[0.6229462 ]
[0.59411275]
[0.6195966 ]
[0.6701005 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5438206 ]
[0.54275453]
[0.624948 ]
[0.5967206 ]
[0.6229317 ]
[0.67407846]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5440888 ]
[0.5436852 ]
[0.6268588 ]
[0.59918475]
[0.6260974 ]
[0.67787415]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5443039]
[0.544527 ]
[0.6286834]
[0.6015133]
[0.6291032]
[0.6814982]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5444688 ]
[0.5452847 ]
[0.6304265 ]
[0.60371375]
[0.6319583 ]
[0.6849607 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5445863 ]
[0.54596287]
[0.6320928 ]
[0.60579324]
[0.6346711 ]
[0.68827105]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54465884]
[0.5465658 ]
[0.63368607]
[0.60775834]
[0.63724965]
[0.6914378 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5446889 ]
[0.54709744]
[0.6352105 ]
[0.6096153 ]
[0.6397014 ]
[0.6944694 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5446787]
[0.5475617]
[0.6366697]
[0.6113701]
[0.6420334]
[0.6973734]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5446304 ]
[0.5479621 ]
[0.63806707]
[0.6130282 ]
[0.6442523 ]
[0.70015705]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5445461 ]
[0.5483021 ]
[0.63940597]
[0.6145949 ]
[0.64636433]
[0.7028271 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54442775]
[0.5485849 ]
[0.6406894 ]
[0.61607504]
[0.6483753 ]
[0.70539004]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.544277 ]
[0.54881346]
[0.6419202 ]
[0.6174733 ]
[0.6502907 ]
[0.7078516 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5440957 ]
[0.54899067]
[0.6431012 ]
[0.618794 ]
[0.65211576]
[0.7102175 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5438854 ]
[0.54911923]
[0.644235 ]
[0.6200414 ]
[0.6538553 ]
[0.71249294]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5436477 ]
[0.54920167]
[0.645324 ]
[0.6212191 ]
[0.655514 ]
[0.7146828 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.543384 ]
[0.5492404 ]
[0.64637035]
[0.622331 ]
[0.6570961 ]
[0.7167918 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5430957 ]
[0.5492377 ]
[0.6473764 ]
[0.6233804 ]
[0.6586056 ]
[0.71882415]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54278404]
[0.5491958 ]
[0.64834404]
[0.6243707 ]
[0.66004646]
[0.72078407]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5424503 ]
[0.54911673]
[0.64927536]
[0.6253048 ]
[0.66142225]
[0.72267526]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54209566]
[0.54900235]
[0.65017205]
[0.6261858 ]
[0.6627363 ]
[0.72450143]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5417212 ]
[0.54885453]
[0.65103585]
[0.62701625]
[0.66399187]
[0.72626597]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.541328 ]
[0.548675 ]
[0.65186846]
[0.6277989 ]
[0.6651921 ]
[0.72797203]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54091704]
[0.54846543]
[0.65267134]
[0.62853605]
[0.6663397 ]
[0.7296226 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54048926]
[0.5482273 ]
[0.65344596]
[0.62923014]
[0.6674375 ]
[0.73122054]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.54004556]
[0.54796225]
[0.6541937 ]
[0.6298833 ]
[0.66848797]
[0.7327686 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5395868 ]
[0.54767156]
[0.6549159 ]
[0.63049763]
[0.66949344]
[0.7342692 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5391137 ]
[0.5473566 ]
[0.65561384]
[0.6310751 ]
[0.67045635]
[0.73572475]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53862715]
[0.54701865]
[0.65628856]
[0.63161755]
[0.6713788 ]
[0.73713756]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5381278 ]
[0.5466589 ]
[0.6569413 ]
[0.6321268 ]
[0.67226285]
[0.7385096 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5376164 ]
[0.5462784 ]
[0.657573 ]
[0.6326044 ]
[0.67311037]
[0.739843 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5370935 ]
[0.5458784 ]
[0.65818477]
[0.63305205]
[0.6739232 ]
[0.7411397 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5365599 ]
[0.5454598 ]
[0.6587774 ]
[0.63347113]
[0.6747031 ]
[0.74240124]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.536016 ]
[0.5450237 ]
[0.65935194]
[0.6338632 ]
[0.67545176]
[0.7436296 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5354625 ]
[0.54457086]
[0.6599092 ]
[0.63422954]
[0.6761706 ]
[0.7448262 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53489983]
[0.5441023 ]
[0.6604499 ]
[0.63457143]
[0.6768611 ]
[0.74599254]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53432864]
[0.5436188 ]
[0.660975 ]
[0.63489 ]
[0.6775248 ]
[0.74713016]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5337493 ]
[0.54312116]
[0.661485 ]
[0.63518655]
[0.67816293]
[0.7482403 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5331623 ]
[0.54261017]
[0.6619808 ]
[0.63546216]
[0.67877674]
[0.7493243 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53256804]
[0.54208654]
[0.6624629 ]
[0.63571775]
[0.67936736]
[0.7503834 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53196704]
[0.54155093]
[0.662932 ]
[0.63595444]
[0.67993605]
[0.75141865]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5313596 ]
[0.541004 ]
[0.6633886 ]
[0.636173 ]
[0.68048376]
[0.7524312 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.53074616]
[0.5404464 ]
[0.66383344]
[0.63637453]
[0.68101156]
[0.7534221 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
100 0.62392217
hypothesis: [[0.53012705]
[0.5398787 ]
[0.6642669 ]
[0.6365597 ]
[0.6815204 ]
[0.7543922 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.52950263]
[0.5393015 ]
[0.66468954]
[0.6367295 ]
[0.6820112 ]
[0.75534254]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5288732 ]
[0.5387153 ]
[0.6651018 ]
[0.63688445]
[0.6824848 ]
[0.7562741 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5282391]
[0.5381206]
[0.6655043]
[0.6370254]
[0.6829421]
[0.7571875]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5276006 ]
[0.53751796]
[0.66589725]
[0.63715315]
[0.6833839 ]
[0.7580836 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.526958 ]
[0.53690773]
[0.6662813 ]
[0.6372682 ]
[0.68381083]
[0.7589632 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5263115 ]
[0.53629047]
[0.6666566 ]
[0.63737124]
[0.68422353]
[0.759827 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.52566147]
[0.53566647]
[0.6670237 ]
[0.63746285]
[0.68462294]
[0.76067567]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.52500814]
[0.53503627]
[0.66738296]
[0.63754356]
[0.68500954]
[0.7615098 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.52435166]
[0.53440017]
[0.6677346 ]
[0.637614 ]
[0.68538386]
[0.76233006]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5236923 ]
[0.5337585 ]
[0.668079 ]
[0.6376747 ]
[0.68574667]
[0.7631369 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5230303 ]
[0.5331117 ]
[0.66841656]
[0.637726 ]
[0.6860984 ]
[0.7639311 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5223658 ]
[0.53246003]
[0.66874754]
[0.6377685 ]
[0.68643963]
[0.764713 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.521699 ]
[0.53180385]
[0.66907215]
[0.63780254]
[0.68677074]
[0.7654832 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5210301 ]
[0.5311434 ]
[0.6693907 ]
[0.6378286 ]
[0.68709236]
[0.76624215]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.52035934]
[0.5304791 ]
[0.6697033 ]
[0.6378471 ]
[0.6874048 ]
[0.7669901 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.51968676]
[0.5298111 ]
[0.67001045]
[0.6378584 ]
[0.6877086 ]
[0.7677279 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5190126 ]
[0.5291396 ]
[0.6703123 ]
[0.6378628 ]
[0.6880042 ]
[0.76845556]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.51833695]
[0.528465 ]
[0.67060894]
[0.6378608 ]
[0.6882918 ]
[0.7691737 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.51766 ]
[0.52778745]
[0.6709007 ]
[0.63785255]
[0.68857193]
[0.7698825 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5169819 ]
[0.5271072 ]
[0.6711877 ]
[0.6378385 ]
[0.6888449 ]
[0.77058244]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.51630276]
[0.52642447]
[0.6714702 ]
[0.6378189 ]
[0.68911105]
[0.77127385]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.51562274]
[0.5257395 ]
[0.67174846]
[0.637794 ]
[0.68937075]
[0.771957 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5149419 ]
[0.52505237]
[0.67202246]
[0.63776416]
[0.6896242 ]
[0.77263224]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5142603 ]
[0.52436334]
[0.6722925 ]
[0.6377296 ]
[0.6898717 ]
[0.7732998 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5135782 ]
[0.5236726 ]
[0.67255867]
[0.6376905 ]
[0.69011366]
[0.77396 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5128956 ]
[0.5229803 ]
[0.6728211 ]
[0.63764715]
[0.6903502 ]
[0.77461314]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.51221263]
[0.5222866 ]
[0.6730801 ]
[0.63759977]
[0.6905816 ]
[0.7752594 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5115293 ]
[0.52159166]
[0.6733356 ]
[0.6375486 ]
[0.6908082 ]
[0.77589893]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5108459 ]
[0.5208956 ]
[0.67358786]
[0.63749385]
[0.69103 ]
[0.7765321 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5101623 ]
[0.5201986 ]
[0.67383695]
[0.6374357 ]
[0.6912475 ]
[0.77715915]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5094787]
[0.5195008]
[0.674083 ]
[0.6373742]
[0.6914607]
[0.7777802]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.50879514]
[0.5188023 ]
[0.67432606]
[0.6373098 ]
[0.69166994]
[0.77839535]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.50811166]
[0.5181032 ]
[0.6745664 ]
[0.63724244]
[0.6918753 ]
[0.779005 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5074284 ]
[0.5174036 ]
[0.674804 ]
[0.63717234]
[0.692077 ]
[0.77960926]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5067454 ]
[0.51670367]
[0.67503893]
[0.63709974]
[0.69227517]
[0.7802082 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.50606275]
[0.5160035 ]
[0.67527133]
[0.63702464]
[0.69247 ]
[0.780802 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5053804 ]
[0.5153032 ]
[0.67550135]
[0.6369473 ]
[0.69266164]
[0.7813909 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5046985 ]
[0.51460284]
[0.675729 ]
[0.63686776]
[0.69285035]
[0.78197503]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5040171 ]
[0.5139025 ]
[0.67595434]
[0.6367863 ]
[0.6930361 ]
[0.78255445]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5033363 ]
[0.51320225]
[0.6761775 ]
[0.63670284]
[0.6932191 ]
[0.7831294 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.50265604]
[0.51250225]
[0.6763986 ]
[0.6366176 ]
[0.6933995 ]
[0.7836999 ]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5019764 ]
[0.5118025 ]
[0.6766176 ]
[0.6365307 ]
[0.69357735]
[0.78426623]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.5012975 ]
[0.51110315]
[0.6768347 ]
[0.63644224]
[0.6937528 ]
[0.78482836]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.50061923]
[0.5104042 ]
[0.6770499 ]
[0.6363523 ]
[0.6939261 ]
[0.78538644]]
predicted: [[1.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.5
hypothesis: [[0.4999418]
[0.5097058]
[0.6772631]
[0.636261 ]
[0.6940971]
[0.7859406]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49926513]
[0.50900793]
[0.67747456]
[0.63616836]
[0.69426614]
[0.7864909 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.4985893 ]
[0.5083107 ]
[0.6776843 ]
[0.63607454]
[0.6944331 ]
[0.78703743]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49791437]
[0.5076141 ]
[0.6778924 ]
[0.63597953]
[0.69459826]
[0.78758043]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49724036]
[0.50691825]
[0.6780988 ]
[0.63588357]
[0.6947616 ]
[0.78811973]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49656728]
[0.5062232 ]
[0.67830366]
[0.6357866 ]
[0.6949231 ]
[0.7886557 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49589515]
[0.505529 ]
[0.678507 ]
[0.6356887 ]
[0.69508314]
[0.7891882 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49522403]
[0.50483567]
[0.6787088 ]
[0.63559 ]
[0.6952416 ]
[0.7897175 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49455395]
[0.50414324]
[0.6789092 ]
[0.63549054]
[0.69539845]
[0.79024345]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.4938849 ]
[0.5034518 ]
[0.67910814]
[0.6353904 ]
[0.695554 ]
[0.79076624]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49321693]
[0.5027614 ]
[0.67930573]
[0.63528955]
[0.69570816]
[0.791286 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49255008]
[0.5020721 ]
[0.679502 ]
[0.6351881 ]
[0.695861 ]
[0.79180264]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49188432]
[0.50138384]
[0.679697 ]
[0.6350862 ]
[0.6960126 ]
[0.7923163 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.4912197 ]
[0.5006967 ]
[0.67989063]
[0.6349837 ]
[0.6961631 ]
[0.7928272 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.49055624]
[0.5000107 ]
[0.68008316]
[0.6348809 ]
[0.6963124 ]
[0.7933351 ]]
predicted: [[0.]
[1.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.6666667
hypothesis: [[0.48989397]
[0.499326 ]
[0.6802744 ]
[0.63477755]
[0.6964607 ]
[0.7938403 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48923293]
[0.49864244]
[0.68046457]
[0.63467395]
[0.696608 ]
[0.79434264]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48857304]
[0.49796015]
[0.6806535 ]
[0.63457006]
[0.6967543 ]
[0.7948424 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4879144 ]
[0.49727914]
[0.6808414 ]
[0.6344659 ]
[0.69689965]
[0.7953395 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48725703]
[0.4965994 ]
[0.6810281 ]
[0.6343614 ]
[0.69704413]
[0.795834 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4866009 ]
[0.49592102]
[0.68121386]
[0.6342568 ]
[0.6971878 ]
[0.7963259 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48594606]
[0.495244 ]
[0.6813985 ]
[0.634152 ]
[0.6973306 ]
[0.79681534]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4852925 ]
[0.49456832]
[0.6815822 ]
[0.63404703]
[0.69747263]
[0.7973023 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4846402 ]
[0.49389407]
[0.68176484]
[0.63394207]
[0.697614 ]
[0.7977868 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48398924]
[0.49322122]
[0.6819465 ]
[0.633837 ]
[0.69775456]
[0.7982689 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48333958]
[0.4925498 ]
[0.6821273 ]
[0.63373184]
[0.6978946 ]
[0.7987487 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48269126]
[0.49187982]
[0.6823071 ]
[0.6336267 ]
[0.69803387]
[0.79922616]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48204428]
[0.49121132]
[0.682486 ]
[0.6335216 ]
[0.69817257]
[0.7997013 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48139864]
[0.4905443 ]
[0.68266404]
[0.63341653]
[0.6983107 ]
[0.80017424]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48075435]
[0.48987877]
[0.6828411 ]
[0.6333115 ]
[0.6984483 ]
[0.8006449 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.48011145]
[0.48921475]
[0.6830174 ]
[0.63320655]
[0.6985854 ]
[0.80111337]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4794699 ]
[0.48855227]
[0.6831928 ]
[0.6331017 ]
[0.69872195]
[0.8015797 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4788297 ]
[0.48789132]
[0.6833674 ]
[0.63299704]
[0.698858 ]
[0.8020439 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47819093]
[0.48723194]
[0.6835411 ]
[0.6328925 ]
[0.6989936 ]
[0.80250597]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47755352]
[0.48657408]
[0.6837141 ]
[0.63278806]
[0.69912887]
[0.802966 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4769175 ]
[0.4859178 ]
[0.6838863 ]
[0.6326838 ]
[0.6992636 ]
[0.80342394]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4762829 ]
[0.48526308]
[0.68405765]
[0.63257974]
[0.6993979 ]
[0.8038798 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47564965]
[0.48461 ]
[0.68422824]
[0.6324759 ]
[0.699532 ]
[0.80433375]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47501785]
[0.48395845]
[0.6843981 ]
[0.63237226]
[0.69966555]
[0.80478567]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47438747]
[0.48330852]
[0.6845672 ]
[0.6322689 ]
[0.69979876]
[0.8052356 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47375846]
[0.48266023]
[0.6847356 ]
[0.6321658 ]
[0.6999317 ]
[0.80568355]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47313088]
[0.4820135 ]
[0.68490326]
[0.63206285]
[0.70006424]
[0.8061297 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47250473]
[0.48136842]
[0.6850702 ]
[0.6319603 ]
[0.70019656]
[0.8065738 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47188002]
[0.48072496]
[0.68523645]
[0.63185793]
[0.7003285 ]
[0.80701613]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47125673]
[0.48008314]
[0.685402 ]
[0.63175595]
[0.70046026]
[0.80745655]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.47063485]
[0.47944295]
[0.68556684]
[0.6316542 ]
[0.70059174]
[0.80789506]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4700144 ]
[0.4788044 ]
[0.685731 ]
[0.63155276]
[0.70072293]
[0.8083318 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46939537]
[0.4781675 ]
[0.6858945 ]
[0.63145167]
[0.7008538 ]
[0.80876666]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46877778]
[0.47753224]
[0.6860573 ]
[0.6313509 ]
[0.70098454]
[0.80919975]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46816164]
[0.47689864]
[0.6862196 ]
[0.6312505 ]
[0.701115 ]
[0.80963117]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4675469 ]
[0.47626665]
[0.68638104]
[0.63115036]
[0.70124525]
[0.8100606 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46693364]
[0.47563636]
[0.6865419 ]
[0.6310506 ]
[0.70137537]
[0.81048846]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46632177]
[0.4750077 ]
[0.68670225]
[0.6309512 ]
[0.70150524]
[0.8109146 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46571136]
[0.47438073]
[0.6868618 ]
[0.6308522 ]
[0.7016349 ]
[0.8113389 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4651024 ]
[0.47375542]
[0.68702084]
[0.6307535 ]
[0.7017644 ]
[0.8117615 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
200 0.57547235
hypothesis: [[0.46449482]
[0.47313175]
[0.6871792 ]
[0.6306553 ]
[0.7018937 ]
[0.8121825 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46388873]
[0.47250977]
[0.68733704]
[0.63055736]
[0.70202285]
[0.8126017 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46328408]
[0.47188944]
[0.68749416]
[0.63045985]
[0.70215183]
[0.8130192 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46268082]
[0.47127074]
[0.6876508 ]
[0.63036275]
[0.7022806 ]
[0.8134352 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.462079 ]
[0.47065374]
[0.6878067 ]
[0.63026595]
[0.7024092 ]
[0.8138494 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46147862]
[0.47003838]
[0.6879621 ]
[0.6301696 ]
[0.7025377 ]
[0.81426203]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46087965]
[0.4694247 ]
[0.6881169 ]
[0.6300736 ]
[0.7026661 ]
[0.814673 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.46028215]
[0.4688127 ]
[0.68827116]
[0.62997806]
[0.7027943 ]
[0.81508243]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45968607]
[0.46820235]
[0.6884248 ]
[0.62988293]
[0.7029224 ]
[0.8154902 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45909142]
[0.46759364]
[0.6885779 ]
[0.6297882 ]
[0.70305043]
[0.81589633]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45849818]
[0.46698663]
[0.68873036]
[0.62969387]
[0.7031783 ]
[0.8163009 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45790637]
[0.46638122]
[0.6888823 ]
[0.6296 ]
[0.703306 ]
[0.81670403]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45731598]
[0.46577755]
[0.6890337 ]
[0.62950647]
[0.70343363]
[0.8171055 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45672703]
[0.46517545]
[0.6891845 ]
[0.62941337]
[0.70356107]
[0.81750536]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45613948]
[0.46457505]
[0.68933475]
[0.6293207 ]
[0.70368844]
[0.81790376]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45555335]
[0.4639763 ]
[0.68948454]
[0.6292284 ]
[0.70381576]
[0.8183006 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45496863]
[0.4633792 ]
[0.68963367]
[0.6291366 ]
[0.70394295]
[0.8186959 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45438537]
[0.46278378]
[0.6897823 ]
[0.62904525]
[0.70407 ]
[0.8190897 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45380348]
[0.46218997]
[0.6899304 ]
[0.6289543 ]
[0.704197 ]
[0.8194819 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45322302]
[0.4615978 ]
[0.69007796]
[0.6288637 ]
[0.7043239 ]
[0.8198728 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45264393]
[0.4610073 ]
[0.690225 ]
[0.62877357]
[0.7044506 ]
[0.8202621 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4520663 ]
[0.46041846]
[0.6903715 ]
[0.62868387]
[0.70457745]
[0.8206499 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45149004]
[0.45983124]
[0.6905175 ]
[0.62859464]
[0.70470405]
[0.8210363 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4509152 ]
[0.45924562]
[0.6906629 ]
[0.62850577]
[0.7048306 ]
[0.8214212 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.45034173]
[0.45866168]
[0.6908078 ]
[0.6284174 ]
[0.704957 ]
[0.8218046 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44976968]
[0.45807934]
[0.69095224]
[0.62832934]
[0.7050834 ]
[0.8221866 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44919902]
[0.45749864]
[0.69109607]
[0.6282418 ]
[0.7052096 ]
[0.82256716]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44862974]
[0.45691955]
[0.6912395 ]
[0.62815464]
[0.7053358 ]
[0.82294625]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44806185]
[0.45634207]
[0.69138235]
[0.62806785]
[0.7054619 ]
[0.82332385]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44749534]
[0.45576623]
[0.6915247 ]
[0.6279816 ]
[0.70558786]
[0.8237002 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44693023]
[0.455192 ]
[0.69166654]
[0.6278957 ]
[0.70571387]
[0.824075 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4463665 ]
[0.45461938]
[0.69180787]
[0.6278103 ]
[0.70583975]
[0.82444847]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44580412]
[0.45404837]
[0.6919487 ]
[0.6277253 ]
[0.70596546]
[0.8248205 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44524315]
[0.453479 ]
[0.6920891 ]
[0.6276407 ]
[0.7060912 ]
[0.8251912 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44468352]
[0.45291117]
[0.69222885]
[0.62755656]
[0.7062169 ]
[0.82556045]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4441253 ]
[0.45234495]
[0.69236827]
[0.6274729 ]
[0.70634246]
[0.8259284 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4435684 ]
[0.45178035]
[0.6925071 ]
[0.62738955]
[0.706468 ]
[0.8262949 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44301286]
[0.45121732]
[0.69264543]
[0.62730664]
[0.7065934 ]
[0.82666004]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4424587 ]
[0.45065588]
[0.69278324]
[0.62722415]
[0.7067187 ]
[0.82702386]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4419059 ]
[0.450096 ]
[0.6929206 ]
[0.6271421 ]
[0.706844 ]
[0.82738626]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44135442]
[0.44953772]
[0.69305754]
[0.6270605 ]
[0.7069692 ]
[0.82774746]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44080433]
[0.44898105]
[0.6931939 ]
[0.62697923]
[0.7070943 ]
[0.82810724]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.44025558]
[0.44842592]
[0.6933298 ]
[0.62689847]
[0.7072194 ]
[0.8284657 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43970817]
[0.44787234]
[0.6934653 ]
[0.62681806]
[0.7073444 ]
[0.82882285]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43916208]
[0.44732034]
[0.69360024]
[0.62673813]
[0.70746934]
[0.82917863]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43861735]
[0.4467699 ]
[0.69373477]
[0.62665856]
[0.70759416]
[0.8295331 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43807396]
[0.44622105]
[0.69386876]
[0.6265795 ]
[0.70771897]
[0.8298863 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43753192]
[0.4456737 ]
[0.6940023 ]
[0.6265008 ]
[0.7078437 ]
[0.8302382 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43699116]
[0.44512793]
[0.6941353 ]
[0.62642246]
[0.70796835]
[0.8305889 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43645176]
[0.4445837 ]
[0.6942679 ]
[0.6263446 ]
[0.7080929 ]
[0.83093816]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43591368]
[0.444041 ]
[0.6944001 ]
[0.6262671 ]
[0.7082175 ]
[0.8312862 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4353769 ]
[0.4434999 ]
[0.6945317 ]
[0.62619007]
[0.70834196]
[0.8316329 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43484145]
[0.44296026]
[0.69466287]
[0.6261134 ]
[0.7084663 ]
[0.83197844]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4343073 ]
[0.4424222 ]
[0.6947936 ]
[0.62603724]
[0.7085907 ]
[0.83232266]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43377447]
[0.44188562]
[0.6949239 ]
[0.62596136]
[0.7087149 ]
[0.8326656 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43324295]
[0.44135058]
[0.6950537 ]
[0.6258859 ]
[0.708839 ]
[0.83300734]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43271273]
[0.44081703]
[0.69518304]
[0.62581086]
[0.70896316]
[0.83334786]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4321838 ]
[0.44028503]
[0.6953119 ]
[0.62573624]
[0.7090872 ]
[0.8336871 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43165618]
[0.43975455]
[0.6954403 ]
[0.62566197]
[0.7092112 ]
[0.834025 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4311298 ]
[0.4392255 ]
[0.69556826]
[0.6255881 ]
[0.7093351 ]
[0.83436173]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.43060476]
[0.438698 ]
[0.6956958 ]
[0.6255147 ]
[0.7094588 ]
[0.8346973 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.430081 ]
[0.43817195]
[0.69582283]
[0.62544155]
[0.70958257]
[0.8350317 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42955852]
[0.43764746]
[0.69594944]
[0.62536895]
[0.70970625]
[0.8353648 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4290373 ]
[0.4371244 ]
[0.6960756 ]
[0.62529665]
[0.70982987]
[0.8356966 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42851737]
[0.4366029 ]
[0.6962013 ]
[0.6252248 ]
[0.7099534 ]
[0.8360273 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42799872]
[0.43608278]
[0.69632655]
[0.6251533 ]
[0.71007687]
[0.8363568 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42748132]
[0.43556422]
[0.69645137]
[0.6250822 ]
[0.71020025]
[0.83668506]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42696518]
[0.43504706]
[0.6965757 ]
[0.62501144]
[0.7103236 ]
[0.8370122 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4264503 ]
[0.43453145]
[0.6966997 ]
[0.6249412 ]
[0.71044683]
[0.8373381 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42593673]
[0.4340172 ]
[0.6968231 ]
[0.6248712 ]
[0.71057004]
[0.8376629 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42542437]
[0.43350446]
[0.69694614]
[0.62480164]
[0.71069306]
[0.83798647]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42491326]
[0.43299317]
[0.6970687 ]
[0.6247324 ]
[0.7108161 ]
[0.83830875]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4244034 ]
[0.43248332]
[0.6971909 ]
[0.6246636 ]
[0.710939 ]
[0.83863 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42389476]
[0.4319749 ]
[0.6973126 ]
[0.6245951 ]
[0.71106184]
[0.83895004]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4233874 ]
[0.43146795]
[0.6974339 ]
[0.6245271 ]
[0.7111847 ]
[0.83926904]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4228813]
[0.4309624]
[0.6975547]
[0.6244594]
[0.7113074]
[0.8395868]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4223764 ]
[0.4304583 ]
[0.6976751 ]
[0.62439203]
[0.71143 ]
[0.83990335]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42187274]
[0.42995563]
[0.6977951 ]
[0.62432504]
[0.71155256]
[0.84021884]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4213703 ]
[0.4294544 ]
[0.6979146 ]
[0.62425846]
[0.71167505]
[0.8405332 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4208691 ]
[0.4289546 ]
[0.69803375]
[0.62419224]
[0.71179754]
[0.8408465 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.42036912]
[0.4284562 ]
[0.6981524 ]
[0.62412643]
[0.71191984]
[0.84115857]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41987035]
[0.42795917]
[0.6982707 ]
[0.6240609 ]
[0.7120421 ]
[0.8414695 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41937277]
[0.42746356]
[0.6983885 ]
[0.6239958 ]
[0.7121642 ]
[0.8417794 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4188764 ]
[0.42696938]
[0.6985059 ]
[0.623931 ]
[0.7122863 ]
[0.84208816]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41838127]
[0.42647654]
[0.6986228 ]
[0.62386656]
[0.7124083 ]
[0.84239584]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41788733]
[0.42598516]
[0.6987394 ]
[0.62380254]
[0.7125303 ]
[0.8427023 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4173946 ]
[0.42549515]
[0.6988555 ]
[0.6237388 ]
[0.7126521 ]
[0.8430078 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41690308]
[0.42500654]
[0.6989712 ]
[0.62367547]
[0.7127739 ]
[0.84331214]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41641274]
[0.42451924]
[0.6990865 ]
[0.62361246]
[0.7128956 ]
[0.8436154 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4159236 ]
[0.4240334 ]
[0.69920135]
[0.6235498 ]
[0.7130172 ]
[0.84391767]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4154356 ]
[0.4235489 ]
[0.6993158 ]
[0.62348753]
[0.7131387 ]
[0.84421873]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41494885]
[0.42306575]
[0.6994298 ]
[0.6234256 ]
[0.7132602 ]
[0.8445187 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41446325]
[0.42258397]
[0.6995434 ]
[0.623364 ]
[0.71338147]
[0.84481776]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41397882]
[0.42210355]
[0.6996566 ]
[0.6233027 ]
[0.71350276]
[0.84511566]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41349557]
[0.42162448]
[0.6997694 ]
[0.6232418 ]
[0.71362394]
[0.8454125 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4130135 ]
[0.42114678]
[0.6998818 ]
[0.62318116]
[0.71374506]
[0.8457083 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41253257]
[0.42067042]
[0.69999367]
[0.62312096]
[0.71386606]
[0.846003 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4120528 ]
[0.4201954 ]
[0.70010525]
[0.62306106]
[0.713987 ]
[0.8462967 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.41157424]
[0.4197217 ]
[0.70021635]
[0.62300146]
[0.7141079 ]
[0.8465893 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4110968 ]
[0.41924933]
[0.70032704]
[0.6229422 ]
[0.71422863]
[0.8468809 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
300 0.5423399
hypothesis: [[0.4106205 ]
[0.4187783 ]
[0.7004374 ]
[0.6228833 ]
[0.71434927]
[0.84717155]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4101454 ]
[0.41830862]
[0.7005473 ]
[0.6228247 ]
[0.71446985]
[0.8474611 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40967143]
[0.41784024]
[0.70065683]
[0.6227665 ]
[0.7145903 ]
[0.84774965]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40919858]
[0.4173732 ]
[0.7007659 ]
[0.6227086 ]
[0.7147108 ]
[0.84803706]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4087269 ]
[0.41690746]
[0.70087457]
[0.622651 ]
[0.71483105]
[0.8483236 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40825632]
[0.41644302]
[0.70098287]
[0.62259376]
[0.7149513 ]
[0.8486091 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40778694]
[0.41597986]
[0.7010908 ]
[0.6225368 ]
[0.71507144]
[0.8488935 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40731862]
[0.41551805]
[0.7011982 ]
[0.6224802 ]
[0.7151915 ]
[0.849177 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40685147]
[0.4150575 ]
[0.7013053 ]
[0.6224239 ]
[0.7153114 ]
[0.8494594 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40638542]
[0.4145983 ]
[0.701412 ]
[0.6223679 ]
[0.7154313 ]
[0.84974086]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4059205 ]
[0.4141403 ]
[0.7015183 ]
[0.62231225]
[0.715551 ]
[0.8500213 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40545672]
[0.41368368]
[0.7016242 ]
[0.62225693]
[0.71567076]
[0.85030085]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40499404]
[0.4132283 ]
[0.70172966]
[0.6222019 ]
[0.7157904 ]
[0.8505793 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40453246]
[0.4127742 ]
[0.7018348 ]
[0.6221472 ]
[0.71590984]
[0.85085684]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.404072 ]
[0.41232136]
[0.70193946]
[0.62209284]
[0.7160293 ]
[0.8511334 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4036126 ]
[0.41186976]
[0.70204383]
[0.6220387 ]
[0.7161486 ]
[0.85140896]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40315437]
[0.41141945]
[0.7021477 ]
[0.62198496]
[0.71626776]
[0.85168356]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4026972 ]
[0.41097042]
[0.70225126]
[0.6219315 ]
[0.71638685]
[0.85195726]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.40224117]
[0.4105226 ]
[0.7023544 ]
[0.62187827]
[0.7165059 ]
[0.8522299 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4017862 ]
[0.4100761 ]
[0.70245713]
[0.62182546]
[0.71662486]
[0.8525016 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4013323 ]
[0.40963078]
[0.7025595 ]
[0.6217729 ]
[0.71674365]
[0.8527724 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4008795 ]
[0.40918675]
[0.70266145]
[0.6217206 ]
[0.71686244]
[0.8530422 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.4004278 ]
[0.40874395]
[0.7027631 ]
[0.6216687 ]
[0.71698105]
[0.8533111 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39997718]
[0.40830237]
[0.7028643 ]
[0.621617 ]
[0.71709967]
[0.85357904]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3995276 ]
[0.40786204]
[0.7029651 ]
[0.6215657 ]
[0.7172181 ]
[0.8538461 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3990791 ]
[0.40742296]
[0.7030655 ]
[0.6215146 ]
[0.7173364 ]
[0.85411215]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39863172]
[0.40698507]
[0.7031656 ]
[0.6214639 ]
[0.7174547 ]
[0.8543773 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39818537]
[0.4065484 ]
[0.70326525]
[0.6214134 ]
[0.7175728 ]
[0.8546415 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3977401 ]
[0.40611297]
[0.70336455]
[0.6213632 ]
[0.71769094]
[0.8549048 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3972959 ]
[0.40567872]
[0.7034635 ]
[0.62131333]
[0.7178089 ]
[0.8551672 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39685273]
[0.40524572]
[0.703562 ]
[0.62126374]
[0.71792674]
[0.85542864]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39641058]
[0.4048139 ]
[0.70366013]
[0.62121445]
[0.7180446 ]
[0.8556893 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39596954]
[0.40438324]
[0.703758 ]
[0.6211654 ]
[0.71816224]
[0.855949 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39552954]
[0.40395385]
[0.7038554 ]
[0.62111664]
[0.7182798 ]
[0.8562077 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39509058]
[0.40352562]
[0.70395243]
[0.62106824]
[0.7183972 ]
[0.85646564]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39465266]
[0.40309858]
[0.70404905]
[0.6210201 ]
[0.7185146 ]
[0.85672253]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39421576]
[0.4026727 ]
[0.7041454 ]
[0.62097216]
[0.71863186]
[0.8569786 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39377993]
[0.40224808]
[0.7042413 ]
[0.62092453]
[0.71874905]
[0.8572338 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39334512]
[0.40182456]
[0.70433676]
[0.6208772 ]
[0.7188661 ]
[0.8574881 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39291134]
[0.40140224]
[0.70443195]
[0.6208301 ]
[0.71898305]
[0.8577415 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3924786]
[0.4009811]
[0.7045268]
[0.6207833]
[0.7190999]
[0.8579941]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39204684]
[0.4005611 ]
[0.7046212 ]
[0.62073684]
[0.71921664]
[0.85824573]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3916161 ]
[0.40014225]
[0.70471525]
[0.6206906 ]
[0.71933335]
[0.8584966 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39118645]
[0.3997246 ]
[0.704809 ]
[0.6206446 ]
[0.7194499 ]
[0.8587465 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39075774]
[0.3993081 ]
[0.70490235]
[0.620599 ]
[0.71956635]
[0.85899556]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.39033008]
[0.39889276]
[0.7049953 ]
[0.62055355]
[0.7196827 ]
[0.8592438 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38990343]
[0.3984785 ]
[0.7050879 ]
[0.6205084 ]
[0.71979886]
[0.85949117]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3894778 ]
[0.39806545]
[0.70518017]
[0.6204635 ]
[0.7199151 ]
[0.85973763]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3890531 ]
[0.39765355]
[0.7052721 ]
[0.6204189 ]
[0.72003114]
[0.8599834 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38862947]
[0.39724272]
[0.7053635 ]
[0.6203745 ]
[0.720147 ]
[0.8602282 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3882068 ]
[0.3968331 ]
[0.70545477]
[0.62033045]
[0.72026277]
[0.86047214]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38778514]
[0.39642456]
[0.70554554]
[0.6202866 ]
[0.7203786 ]
[0.8607153 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3873645 ]
[0.39601716]
[0.705636 ]
[0.620243 ]
[0.7204942 ]
[0.8609576 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3869448 ]
[0.39561087]
[0.7057261 ]
[0.62019974]
[0.72060966]
[0.8611991 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3865261 ]
[0.39520574]
[0.7058158 ]
[0.6201567 ]
[0.7207251 ]
[0.86143976]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3861084 ]
[0.39480168]
[0.7059052 ]
[0.6201139 ]
[0.72084033]
[0.8616796 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38569167]
[0.39439875]
[0.70599425]
[0.62007135]
[0.72095555]
[0.86191857]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3852759 ]
[0.3939969 ]
[0.7060829 ]
[0.6200291 ]
[0.72107065]
[0.8621568 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3848611 ]
[0.39359617]
[0.7061713 ]
[0.6199871 ]
[0.7211856 ]
[0.86239415]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3844473 ]
[0.39319655]
[0.70625925]
[0.6199453 ]
[0.7213005 ]
[0.8626308 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38403445]
[0.39279807]
[0.70634687]
[0.6199038 ]
[0.7214153 ]
[0.86286664]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3836226 ]
[0.39240062]
[0.7064341 ]
[0.6198625 ]
[0.72152996]
[0.86310154]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38321167]
[0.39200428]
[0.70652103]
[0.6198215 ]
[0.7216445 ]
[0.86333567]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3828017 ]
[0.39160904]
[0.7066076 ]
[0.6197807 ]
[0.72175896]
[0.8635691 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3823927 ]
[0.39121485]
[0.70669377]
[0.6197401 ]
[0.7218732 ]
[0.8638016 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38198465]
[0.39082173]
[0.70677966]
[0.6196999 ]
[0.7219875 ]
[0.8640334 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38157755]
[0.3904297 ]
[0.7068652 ]
[0.61965984]
[0.72210157]
[0.86426437]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3811714 ]
[0.39003876]
[0.70695037]
[0.61962 ]
[0.7222156 ]
[0.8644946 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.38076618]
[0.38964885]
[0.70703524]
[0.61958045]
[0.7223295 ]
[0.864724 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3803619 ]
[0.38926002]
[0.7071197 ]
[0.6195411 ]
[0.7224432 ]
[0.8649527 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3799586 ]
[0.3888723 ]
[0.70720387]
[0.61950207]
[0.72255695]
[0.86518055]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3795562 ]
[0.38848558]
[0.70728767]
[0.6194632 ]
[0.7226705 ]
[0.8654077 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37915474]
[0.3880999 ]
[0.7073711 ]
[0.6194246 ]
[0.7227839 ]
[0.86563396]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3787542 ]
[0.38771534]
[0.70745426]
[0.6193862 ]
[0.7228973 ]
[0.8658595 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3783546 ]
[0.38733178]
[0.70753706]
[0.6193481 ]
[0.72301054]
[0.86608434]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37795594]
[0.38694924]
[0.70761955]
[0.61931014]
[0.7231236 ]
[0.8663084 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3775582 ]
[0.3865678 ]
[0.7077017 ]
[0.61927253]
[0.7232367 ]
[0.8665317 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37716138]
[0.3861874 ]
[0.70778346]
[0.6192351 ]
[0.7233496 ]
[0.86675423]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37676546]
[0.385808 ]
[0.7078649 ]
[0.6191979 ]
[0.72346234]
[0.8669761 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3763705 ]
[0.38542965]
[0.707946 ]
[0.61916095]
[0.72357506]
[0.8671971 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37597638]
[0.38505232]
[0.70802677]
[0.6191242 ]
[0.72368765]
[0.8674174 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37558323]
[0.38467604]
[0.70810723]
[0.61908764]
[0.72380006]
[0.8676369 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37519094]
[0.3843007 ]
[0.70818734]
[0.61905134]
[0.7239124 ]
[0.8678558 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37479955]
[0.38392645]
[0.7082671 ]
[0.6190153 ]
[0.72402465]
[0.8680738 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37440908]
[0.3835532 ]
[0.7083466 ]
[0.61897945]
[0.72413677]
[0.8682912 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3740195 ]
[0.38318095]
[0.7084257 ]
[0.61894387]
[0.72424877]
[0.86850786]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37363085]
[0.38280973]
[0.70850444]
[0.61890846]
[0.72436076]
[0.8687237 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3732431 ]
[0.38243946]
[0.70858294]
[0.6188733 ]
[0.72447246]
[0.8689389 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3728562 ]
[0.38207024]
[0.7086611 ]
[0.6188383 ]
[0.72458416]
[0.8691534 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37247017]
[0.381702 ]
[0.70873886]
[0.6188036 ]
[0.7246958 ]
[0.8693672 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37208503]
[0.38133478]
[0.7088164 ]
[0.6187691 ]
[0.72480726]
[0.8695802 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37170082]
[0.38096857]
[0.70889354]
[0.61873484]
[0.72491854]
[0.8697925 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37131748]
[0.38060328]
[0.70897037]
[0.61870074]
[0.7250298 ]
[0.87000406]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.370935 ]
[0.380239 ]
[0.7090469 ]
[0.6186669 ]
[0.72514087]
[0.870215 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37055337]
[0.3798757 ]
[0.70912313]
[0.6186332 ]
[0.7252519 ]
[0.8704252 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.37017262]
[0.37951338]
[0.70919895]
[0.6185998 ]
[0.7253628 ]
[0.8706347 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3697928 ]
[0.37915206]
[0.70927453]
[0.6185666 ]
[0.72547364]
[0.87084347]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3694138 ]
[0.3787917 ]
[0.70934975]
[0.61853355]
[0.72558427]
[0.87105167]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36903566]
[0.37843227]
[0.7094247 ]
[0.6185007 ]
[0.7256948 ]
[0.8712591 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3686584 ]
[0.37807384]
[0.70949924]
[0.61846817]
[0.7258052 ]
[0.8714658 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
400 0.5182588
hypothesis: [[0.368282 ]
[0.3777164 ]
[0.70957357]
[0.6184358 ]
[0.7259156 ]
[0.87167186]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36790645]
[0.3773599 ]
[0.70964754]
[0.6184036 ]
[0.7260258 ]
[0.8718772 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36753172]
[0.37700436]
[0.70972115]
[0.61837167]
[0.7261359 ]
[0.8720819 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36715788]
[0.37664974]
[0.7097944 ]
[0.6183399 ]
[0.72624594]
[0.87228584]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36678487]
[0.37629607]
[0.7098675 ]
[0.6183083 ]
[0.72635573]
[0.8724892 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36641273]
[0.37594336]
[0.7099402 ]
[0.61827695]
[0.7264655 ]
[0.8726919 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36604142]
[0.3755916 ]
[0.71001256]
[0.61824584]
[0.72657514]
[0.87289387]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36567095]
[0.3752408 ]
[0.7100847 ]
[0.6182149 ]
[0.72668475]
[0.8730952 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3653013 ]
[0.37489092]
[0.71015644]
[0.6181841 ]
[0.72679406]
[0.8732959 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3649325 ]
[0.37454197]
[0.71022785]
[0.6181536 ]
[0.72690344]
[0.8734959 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3645646 ]
[0.37419397]
[0.710299 ]
[0.6181233 ]
[0.7270127 ]
[0.8736952 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36419746]
[0.3738469 ]
[0.71036994]
[0.61809313]
[0.7271217 ]
[0.873894 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36383116]
[0.37350076]
[0.7104404 ]
[0.6180632 ]
[0.7272306 ]
[0.8740919 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36346567]
[0.37315547]
[0.7105107 ]
[0.6180334 ]
[0.7273395 ]
[0.8742894 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.363101 ]
[0.37281117]
[0.7105806 ]
[0.6180039 ]
[0.72744817]
[0.87448615]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36273718]
[0.37246776]
[0.7106502 ]
[0.6179745 ]
[0.7275568 ]
[0.8746822 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3623742 ]
[0.37212527]
[0.71071947]
[0.6179454 ]
[0.72766536]
[0.8748777 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36201197]
[0.37178373]
[0.7107885 ]
[0.6179164 ]
[0.7277738 ]
[0.8750724 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3616506 ]
[0.37144303]
[0.7108572 ]
[0.6178876 ]
[0.727882 ]
[0.8752666 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36129004]
[0.3711033 ]
[0.7109256 ]
[0.617859 ]
[0.72799015]
[0.8754601 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36093026]
[0.37076443]
[0.71099365]
[0.61783063]
[0.7280983 ]
[0.875653 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36057132]
[0.37042648]
[0.7110615 ]
[0.6178024 ]
[0.72820616]
[0.8758453 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.36021316]
[0.3700894 ]
[0.71112895]
[0.61777437]
[0.728314 ]
[0.87603694]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3598558 ]
[0.3697532 ]
[0.7111962 ]
[0.61774653]
[0.72842157]
[0.876228 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35949928]
[0.36941797]
[0.71126306]
[0.6177189 ]
[0.7285293 ]
[0.8764184 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35914353]
[0.36908358]
[0.71132964]
[0.61769146]
[0.72863674]
[0.87660813]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35878858]
[0.3687501 ]
[0.7113959 ]
[0.61766416]
[0.7287441 ]
[0.87679726]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35843438]
[0.36841744]
[0.7114619 ]
[0.6176371 ]
[0.7288513 ]
[0.87698585]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35808104]
[0.36808574]
[0.7115277 ]
[0.6176102 ]
[0.7289585 ]
[0.87717384]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35772848]
[0.36775488]
[0.71159303]
[0.6175835 ]
[0.7290655 ]
[0.8773612 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3573767 ]
[0.36742485]
[0.71165824]
[0.617557 ]
[0.72917235]
[0.87754786]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35702565]
[0.36709568]
[0.7117231 ]
[0.6175306 ]
[0.7292791 ]
[0.87773395]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35667545]
[0.36676747]
[0.7117876 ]
[0.6175045 ]
[0.72938585]
[0.87791955]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35632598]
[0.36644006]
[0.71185184]
[0.61747843]
[0.72949237]
[0.87810445]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3559773 ]
[0.3661135 ]
[0.71191573]
[0.6174526 ]
[0.7295988 ]
[0.87828875]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35562938]
[0.36578786]
[0.71197945]
[0.617427 ]
[0.72970515]
[0.87847245]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35528225]
[0.36546302]
[0.7120428 ]
[0.6174015 ]
[0.7298113 ]
[0.87865555]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35493588]
[0.365139 ]
[0.7121059 ]
[0.6173762 ]
[0.7299174 ]
[0.87883806]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35459027]
[0.3648159 ]
[0.71216863]
[0.61735106]
[0.7300234 ]
[0.87902004]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35424542]
[0.36449367]
[0.71223116]
[0.61732614]
[0.73012924]
[0.87920135]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3539014 ]
[0.36417225]
[0.7122934 ]
[0.6173014 ]
[0.7302349 ]
[0.8793822 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35355806]
[0.36385167]
[0.7123553 ]
[0.61727685]
[0.7303406 ]
[0.8795624 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35321552]
[0.36353195]
[0.71241695]
[0.6172524 ]
[0.7304461 ]
[0.87974197]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35287368]
[0.363213 ]
[0.7124783 ]
[0.61722815]
[0.7305515 ]
[0.879921 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35253268]
[0.36289495]
[0.7125394 ]
[0.61720407]
[0.7306567 ]
[0.8800994 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35219237]
[0.36257774]
[0.7126002 ]
[0.61718017]
[0.7307619 ]
[0.88027734]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35185283]
[0.36226135]
[0.7126607 ]
[0.61715645]
[0.730867 ]
[0.8804546 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35151404]
[0.36194575]
[0.7127209 ]
[0.6171329 ]
[0.73097193]
[0.88063145]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35117596]
[0.361631 ]
[0.71278083]
[0.6171095 ]
[0.7310767 ]
[0.8808076 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3508387 ]
[0.36131707]
[0.7128405 ]
[0.6170863 ]
[0.73118144]
[0.8809832 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35050213]
[0.361004 ]
[0.7128999 ]
[0.6170633 ]
[0.73128605]
[0.88115835]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.35016626]
[0.36069167]
[0.712959 ]
[0.61704034]
[0.7313905 ]
[0.88133276]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3498312]
[0.3603802]
[0.7130178]
[0.6170176]
[0.7314949]
[0.8815068]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3494968 ]
[0.3600695 ]
[0.7130764 ]
[0.61699504]
[0.73159915]
[0.88168013]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3491632 ]
[0.35975963]
[0.71313465]
[0.6169727 ]
[0.7317032 ]
[0.881853 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34883028]
[0.35945058]
[0.71319264]
[0.6169504 ]
[0.73180723]
[0.88202524]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3484981 ]
[0.3591423 ]
[0.71325034]
[0.61692834]
[0.7319112 ]
[0.88219696]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34816664]
[0.35883486]
[0.7133078 ]
[0.6169064 ]
[0.7320149 ]
[0.88236815]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34783596]
[0.35852817]
[0.71336496]
[0.61688465]
[0.73211855]
[0.8825388 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34750593]
[0.3582223 ]
[0.7134219 ]
[0.616863 ]
[0.7322221 ]
[0.8827089 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34717667]
[0.35791725]
[0.7134785 ]
[0.6168417 ]
[0.73232555]
[0.8828785 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34684807]
[0.35761297]
[0.71353483]
[0.61682034]
[0.7324289 ]
[0.8830475 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34652022]
[0.35730946]
[0.7135909 ]
[0.61679924]
[0.732532 ]
[0.883216 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34619308]
[0.35700676]
[0.7136467 ]
[0.6167783 ]
[0.7326352 ]
[0.883384 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34586662]
[0.35670483]
[0.7137022 ]
[0.61675745]
[0.73273814]
[0.88355136]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3455409]
[0.3564037]
[0.7137575]
[0.6167368]
[0.7328411]
[0.8837184]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34521592]
[0.35610336]
[0.71381253]
[0.6167164 ]
[0.7329438 ]
[0.8838847 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3448916 ]
[0.35580376]
[0.71386725]
[0.6166961 ]
[0.7330464 ]
[0.88405055]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.344568 ]
[0.35550493]
[0.7139217 ]
[0.61667585]
[0.73314893]
[0.88421583]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34424508]
[0.35520688]
[0.7139759 ]
[0.6166559 ]
[0.73325133]
[0.8843807 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34392285]
[0.3549096 ]
[0.7140299 ]
[0.616636 ]
[0.7333537 ]
[0.88454497]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34360135]
[0.35461313]
[0.71408355]
[0.6166163 ]
[0.7334558 ]
[0.8847088 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34328052]
[0.35431734]
[0.71413696]
[0.6165967 ]
[0.7335578 ]
[0.884872 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34296042]
[0.35402238]
[0.71419007]
[0.6165774 ]
[0.73365986]
[0.88503474]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.342641 ]
[0.35372815]
[0.71424294]
[0.6165581 ]
[0.7337616 ]
[0.885197 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34232223]
[0.35343468]
[0.71429557]
[0.61653894]
[0.7338634 ]
[0.8853588 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34200415]
[0.35314196]
[0.71434796]
[0.61652 ]
[0.73396504]
[0.88552 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3416868 ]
[0.35285 ]
[0.7144 ]
[0.6165012 ]
[0.7340665 ]
[0.88568074]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34137005]
[0.35255873]
[0.71445185]
[0.6164825 ]
[0.7341678 ]
[0.88584095]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34105402]
[0.35226825]
[0.7145034 ]
[0.61646396]
[0.73426914]
[0.88600063]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3407387 ]
[0.35197854]
[0.71455467]
[0.6164456 ]
[0.7343703 ]
[0.88615984]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34042403]
[0.35168955]
[0.7146057 ]
[0.61642736]
[0.7344713 ]
[0.88631856]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.34011 ]
[0.35140133]
[0.71465653]
[0.61640936]
[0.73457223]
[0.88647676]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33979672]
[0.35111377]
[0.7147071 ]
[0.6163914 ]
[0.734673 ]
[0.8866345 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33948404]
[0.350827 ]
[0.7147574 ]
[0.61637366]
[0.7347737 ]
[0.8867918 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33917207]
[0.35054097]
[0.71480733]
[0.616356 ]
[0.7348743 ]
[0.8869486 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33886075]
[0.35025564]
[0.7148571 ]
[0.6163385 ]
[0.73497474]
[0.88710475]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3385501 ]
[0.349971 ]
[0.71490663]
[0.6163211 ]
[0.7350751 ]
[0.8872606 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3382401 ]
[0.34968713]
[0.7149558 ]
[0.6163038 ]
[0.7351754 ]
[0.8874158 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33793074]
[0.34940398]
[0.7150048 ]
[0.61628675]
[0.7352755 ]
[0.8875707 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33762205]
[0.34912157]
[0.71505356]
[0.6162698 ]
[0.7353755 ]
[0.887725 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33731407]
[0.34883988]
[0.715102 ]
[0.616253 ]
[0.7354753 ]
[0.88787884]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3370067 ]
[0.34855887]
[0.7151503 ]
[0.6162363 ]
[0.73557514]
[0.8880322 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33669996]
[0.34827858]
[0.7151983 ]
[0.6162198 ]
[0.73567474]
[0.8881851 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3363939 ]
[0.347999 ]
[0.71524596]
[0.6162034 ]
[0.73577434]
[0.88833755]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3360885 ]
[0.34772015]
[0.7152935 ]
[0.61618716]
[0.7358738 ]
[0.8884895 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33578375]
[0.347442 ]
[0.71534073]
[0.61617106]
[0.73597306]
[0.88864106]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3354796]
[0.3471645]
[0.7153877]
[0.616155 ]
[0.7360723]
[0.8887921]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3351761 ]
[0.34688783]
[0.71543443]
[0.6161392 ]
[0.73617136]
[0.8889426 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33487326]
[0.3466117 ]
[0.7154809 ]
[0.61612344]
[0.73627037]
[0.8890927 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
500 0.4997227
hypothesis: [[0.3345711 ]
[0.34633642]
[0.7155272 ]
[0.61610794]
[0.73636925]
[0.88924235]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33426946]
[0.34606177]
[0.7155732 ]
[0.6160925 ]
[0.736468 ]
[0.8893915 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33396858]
[0.34578773]
[0.71561885]
[0.6160771 ]
[0.73656666]
[0.8895402 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3336683 ]
[0.3455145 ]
[0.7156644 ]
[0.616062 ]
[0.7366651 ]
[0.88968843]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3333686 ]
[0.3452419 ]
[0.7157096 ]
[0.61604697]
[0.73676366]
[0.88983625]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33306956]
[0.34497002]
[0.7157546 ]
[0.616032 ]
[0.7368619 ]
[0.8899836 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33277118]
[0.34469885]
[0.71579945]
[0.6160173 ]
[0.7369601 ]
[0.8901305 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3324734 ]
[0.3444283 ]
[0.7158439 ]
[0.6160026 ]
[0.73705816]
[0.8902771 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33217627]
[0.34415847]
[0.71588826]
[0.6159881 ]
[0.73715615]
[0.89042306]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33187973]
[0.34388933]
[0.71593225]
[0.6159738 ]
[0.7372541 ]
[0.89056855]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33158383]
[0.34362084]
[0.7159761 ]
[0.61595947]
[0.7373518 ]
[0.8907137 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33128852]
[0.343353 ]
[0.71601963]
[0.61594534]
[0.7374494 ]
[0.89085835]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33099383]
[0.34308586]
[0.71606296]
[0.61593133]
[0.7375469 ]
[0.89100266]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3306998 ]
[0.3428194 ]
[0.71610606]
[0.61591744]
[0.7376443 ]
[0.8911464 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33040634]
[0.34255362]
[0.71614885]
[0.61590374]
[0.73774165]
[0.8912898 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.33011353]
[0.3422885 ]
[0.71619153]
[0.61589015]
[0.7378389 ]
[0.8914327 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32982135]
[0.34202406]
[0.71623385]
[0.6158767 ]
[0.73793596]
[0.89157516]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3295297 ]
[0.3417602 ]
[0.716276 ]
[0.6158632 ]
[0.7380329 ]
[0.89171726]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3292387 ]
[0.34149706]
[0.7163179 ]
[0.61585003]
[0.7381298 ]
[0.8918588 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3289483 ]
[0.34123456]
[0.7163595 ]
[0.61583686]
[0.7382264 ]
[0.892 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3286585 ]
[0.34097272]
[0.7164009 ]
[0.61582386]
[0.7383231 ]
[0.8921408 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3283693 ]
[0.34071153]
[0.7164421 ]
[0.615811 ]
[0.73841965]
[0.8922811 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3280807 ]
[0.34045097]
[0.71648306]
[0.61579823]
[0.73851603]
[0.89242107]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32779267]
[0.34019107]
[0.71652377]
[0.61578554]
[0.73861235]
[0.89256054]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3275053 ]
[0.33993185]
[0.7165643 ]
[0.6157731 ]
[0.73870856]
[0.8926996 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32721847]
[0.33967322]
[0.71660453]
[0.6157607 ]
[0.7388046 ]
[0.8928383 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32693225]
[0.3394153 ]
[0.7166445 ]
[0.6157484 ]
[0.73890054]
[0.8929765 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32664663]
[0.339158 ]
[0.71668434]
[0.61573625]
[0.7389964 ]
[0.8931144 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3263616 ]
[0.33890128]
[0.71672386]
[0.6157242 ]
[0.7390922 ]
[0.8932517 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3260771 ]
[0.33864528]
[0.7167632 ]
[0.61571234]
[0.73918784]
[0.8933887 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32579333]
[0.33838993]
[0.7168023 ]
[0.6157006 ]
[0.7392834 ]
[0.89352536]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32551 ]
[0.33813518]
[0.7168412 ]
[0.6156889 ]
[0.7393788 ]
[0.89366156]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32522732]
[0.3378811 ]
[0.71687984]
[0.6156774 ]
[0.7394741 ]
[0.8937972 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3249452 ]
[0.33762753]
[0.71691823]
[0.615666 ]
[0.7395693 ]
[0.8939326 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3246637 ]
[0.33737466]
[0.71695644]
[0.61565465]
[0.73966444]
[0.8940676 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32438272]
[0.33712244]
[0.7169944 ]
[0.6156435 ]
[0.7397594 ]
[0.8942022 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32410234]
[0.3368708 ]
[0.71703213]
[0.61563236]
[0.7398542 ]
[0.8943363 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32382256]
[0.33661973]
[0.7170696 ]
[0.6156214 ]
[0.7399489 ]
[0.89447 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3235433 ]
[0.3363694 ]
[0.7171069 ]
[0.61561054]
[0.7400436 ]
[0.8946034 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32326466]
[0.33611965]
[0.7171439 ]
[0.6155998 ]
[0.74013823]
[0.8947363 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32298654]
[0.3358705 ]
[0.7171808 ]
[0.61558914]
[0.7402326 ]
[0.89486885]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32270908]
[0.33562198]
[0.7172174 ]
[0.6155787 ]
[0.74032694]
[0.895001 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3224321 ]
[0.33537406]
[0.7172538 ]
[0.6155683 ]
[0.74042106]
[0.8951328 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3221557 ]
[0.33512676]
[0.7172899 ]
[0.615558 ]
[0.7405153 ]
[0.89526415]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32187986]
[0.33488002]
[0.71732587]
[0.61554784]
[0.7406093 ]
[0.89539516]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3216046 ]
[0.33463395]
[0.7173616 ]
[0.6155378 ]
[0.74070317]
[0.89552575]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3213299 ]
[0.33438846]
[0.71739715]
[0.61552787]
[0.7407969 ]
[0.89565593]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32105577]
[0.33414358]
[0.7174324 ]
[0.61551803]
[0.7408906 ]
[0.89578575]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32078215]
[0.33389926]
[0.7174675 ]
[0.6155083 ]
[0.7409842 ]
[0.8959152 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32050908]
[0.33365557]
[0.7175023 ]
[0.61549866]
[0.74107754]
[0.8960442 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.32023662]
[0.33341247]
[0.71753687]
[0.6154891 ]
[0.741171 ]
[0.89617294]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3199647 ]
[0.33317 ]
[0.7175713 ]
[0.6154797 ]
[0.74126416]
[0.89630115]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3196933 ]
[0.3329281 ]
[0.7176055 ]
[0.61547047]
[0.7413573 ]
[0.8964291 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31942248]
[0.33268675]
[0.71763945]
[0.61546123]
[0.7414503 ]
[0.8965566 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31915218]
[0.332446 ]
[0.7176732 ]
[0.6154522 ]
[0.7415432 ]
[0.8966838 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31888247]
[0.33220595]
[0.71770674]
[0.6154432 ]
[0.7416361 ]
[0.89681065]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3186133 ]
[0.33196637]
[0.71774006]
[0.6154344 ]
[0.74172884]
[0.896937 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3183446 ]
[0.33172747]
[0.7177732 ]
[0.6154257 ]
[0.7418215 ]
[0.8970631 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31807655]
[0.3314891 ]
[0.7178061 ]
[0.61541706]
[0.7419139 ]
[0.8971887 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31780896]
[0.33125132]
[0.71783876]
[0.6154086 ]
[0.7420064 ]
[0.8973141 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31754196]
[0.3310141 ]
[0.71787125]
[0.61540014]
[0.7420987 ]
[0.897439 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31727546]
[0.3307775 ]
[0.7179035 ]
[0.6153919 ]
[0.7421909 ]
[0.89756364]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3170095 ]
[0.3305414 ]
[0.7179356 ]
[0.6153836 ]
[0.74228287]
[0.8976878 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31674406]
[0.33030593]
[0.7179674 ]
[0.6153755 ]
[0.7423749 ]
[0.89781165]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31647915]
[0.33007097]
[0.717999 ]
[0.61536753]
[0.7424667 ]
[0.89793503]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3162148 ]
[0.3298366 ]
[0.71803033]
[0.61535954]
[0.7425584 ]
[0.8980582 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31595093]
[0.32960284]
[0.71806157]
[0.61535174]
[0.74265003]
[0.8981809 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31568763]
[0.3293696 ]
[0.71809256]
[0.61534405]
[0.7427416 ]
[0.89830333]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31542486]
[0.32913697]
[0.7181233 ]
[0.6153364 ]
[0.742833 ]
[0.8984254 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3151626 ]
[0.32890487]
[0.7181539 ]
[0.6153289 ]
[0.7429244 ]
[0.89854705]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31490088]
[0.32867336]
[0.71818423]
[0.6153215 ]
[0.7430155 ]
[0.89866835]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31463963]
[0.32844242]
[0.7182144 ]
[0.61531425]
[0.74310666]
[0.8987894 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31437895]
[0.32821196]
[0.7182443 ]
[0.61530703]
[0.7431976 ]
[0.89891 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3141188 ]
[0.3279822 ]
[0.71827406]
[0.61529994]
[0.7432886 ]
[0.89903027]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3138591 ]
[0.3277529 ]
[0.71830356]
[0.61529297]
[0.74337935]
[0.8991502 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3136 ]
[0.32752416]
[0.7183329 ]
[0.61528605]
[0.74347 ]
[0.89926976]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31334132]
[0.32729596]
[0.71836203]
[0.61527926]
[0.7435606 ]
[0.89938897]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31308323]
[0.32706833]
[0.71839094]
[0.6152725 ]
[0.7436511 ]
[0.8995079 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31282562]
[0.32684118]
[0.7184196 ]
[0.6152659 ]
[0.74374145]
[0.89962643]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31256852]
[0.32661468]
[0.7184481 ]
[0.6152594 ]
[0.74383175]
[0.8997445 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31231195]
[0.3263886 ]
[0.7184764 ]
[0.615253 ]
[0.7439219 ]
[0.89986247]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31205586]
[0.32616317]
[0.7185045 ]
[0.61524665]
[0.74401194]
[0.89997995]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3118003 ]
[0.32593828]
[0.7185324 ]
[0.61524045]
[0.7441019 ]
[0.9000972 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3115452 ]
[0.32571387]
[0.7185601 ]
[0.61523426]
[0.7441917 ]
[0.90021396]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31129062]
[0.32549006]
[0.7185875 ]
[0.6152283 ]
[0.7442815 ]
[0.9003305 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31103653]
[0.32526675]
[0.7186148 ]
[0.61522233]
[0.74437106]
[0.9004466 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31078297]
[0.32504398]
[0.7186419 ]
[0.61521643]
[0.7444606 ]
[0.90056247]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31052995]
[0.32482174]
[0.71866876]
[0.6152107 ]
[0.74455005]
[0.9006779 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31027734]
[0.32460004]
[0.71869546]
[0.61520505]
[0.74463934]
[0.90079314]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.31002527]
[0.3243789 ]
[0.7187219 ]
[0.6151995 ]
[0.7447286 ]
[0.90090793]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3097737 ]
[0.32415822]
[0.7187482 ]
[0.615194 ]
[0.74481773]
[0.90102243]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30952263]
[0.32393813]
[0.71877426]
[0.61518866]
[0.7449068 ]
[0.9011365 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30927205]
[0.32371855]
[0.7188002 ]
[0.6151834 ]
[0.74499565]
[0.9012505 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30902192]
[0.3234995 ]
[0.7188259 ]
[0.6151782 ]
[0.74508446]
[0.90136397]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30877233]
[0.32328093]
[0.7188513 ]
[0.6151731 ]
[0.7451732 ]
[0.9014772 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30852318]
[0.32306293]
[0.71887666]
[0.6151681 ]
[0.7452618 ]
[0.9015901 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30827454]
[0.32284543]
[0.71890175]
[0.6151632 ]
[0.7453503 ]
[0.90170264]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30802637]
[0.3226284 ]
[0.71892667]
[0.6151584 ]
[0.7454387 ]
[0.9018149 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30777872]
[0.32241198]
[0.71895134]
[0.6151537 ]
[0.7455271 ]
[0.90192676]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3075315 ]
[0.322196 ]
[0.71897584]
[0.61514896]
[0.7456152 ]
[0.9020383 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
600 0.48470655
hypothesis: [[0.3072848 ]
[0.32198054]
[0.71900016]
[0.61514443]
[0.7457033 ]
[0.90214956]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30703855]
[0.3217656 ]
[0.7190243 ]
[0.61513996]
[0.74579126]
[0.9022606 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3067928 ]
[0.3215512 ]
[0.71904826]
[0.6151356 ]
[0.7458791 ]
[0.9023712 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30654752]
[0.32133728]
[0.719072 ]
[0.6151313 ]
[0.745967 ]
[0.9024816 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30630273]
[0.3211239 ]
[0.7190955 ]
[0.61512715]
[0.7460547 ]
[0.90259165]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3060584 ]
[0.320911 ]
[0.7191189 ]
[0.61512303]
[0.7461423 ]
[0.90270126]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30581456]
[0.32069862]
[0.7191421 ]
[0.6151191 ]
[0.7462298 ]
[0.9028107 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3055712 ]
[0.32048678]
[0.7191651 ]
[0.61511517]
[0.74631727]
[0.9029198 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3053283 ]
[0.32027537]
[0.71918786]
[0.61511135]
[0.74640447]
[0.90302855]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30508584]
[0.32006449]
[0.7192105 ]
[0.6151076 ]
[0.74649173]
[0.9031371 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3048439 ]
[0.31985408]
[0.7192329 ]
[0.61510396]
[0.7465788 ]
[0.9032453 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30460238]
[0.3196442 ]
[0.7192551 ]
[0.6151004 ]
[0.7466658 ]
[0.9033531 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30436134]
[0.31943482]
[0.71927714]
[0.6150969 ]
[0.74675274]
[0.9034607 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30412078]
[0.3192259 ]
[0.71929896]
[0.6150935 ]
[0.7468396 ]
[0.9035679 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30388063]
[0.31901747]
[0.71932065]
[0.6150902 ]
[0.7469262 ]
[0.9036749 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30364102]
[0.31880957]
[0.7193421 ]
[0.615087 ]
[0.74701285]
[0.90378153]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30340183]
[0.31860214]
[0.7193634 ]
[0.6150838 ]
[0.7470993 ]
[0.90388787]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30316305]
[0.31839514]
[0.7193845 ]
[0.6150807 ]
[0.7471856 ]
[0.9039939 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30292478]
[0.31818873]
[0.71940535]
[0.61507773]
[0.747272 ]
[0.90409964]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.302687 ]
[0.31798273]
[0.7194261 ]
[0.6150749 ]
[0.74735814]
[0.9042052 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3024496 ]
[0.31777728]
[0.71944666]
[0.6150721 ]
[0.7474443 ]
[0.9043102 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30221272]
[0.31757227]
[0.719467 ]
[0.6150693 ]
[0.7475302 ]
[0.9044152 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30197626]
[0.31736773]
[0.71948713]
[0.61506665]
[0.7476161 ]
[0.9045197 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30174023]
[0.3171637 ]
[0.71950716]
[0.61506414]
[0.74770194]
[0.904624 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3015047 ]
[0.31696016]
[0.71952695]
[0.6150617 ]
[0.7477877 ]
[0.90472806]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3012696 ]
[0.31675702]
[0.7195466 ]
[0.6150593 ]
[0.74787325]
[0.9048317 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30103493]
[0.31655443]
[0.719566 ]
[0.615057 ]
[0.74795884]
[0.9049352 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.3008007 ]
[0.3163523 ]
[0.71958524]
[0.6150547 ]
[0.7480442 ]
[0.9050383 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30056697]
[0.3161506 ]
[0.7196044 ]
[0.6150526 ]
[0.7481294 ]
[0.9051411 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30033362]
[0.31594944]
[0.71962327]
[0.61505055]
[0.7482147 ]
[0.9052437 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.30010074]
[0.31574875]
[0.719642 ]
[0.6150486 ]
[0.7482999 ]
[0.905346 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2998683 ]
[0.31554842]
[0.7196604 ]
[0.6150466 ]
[0.7483849 ]
[0.9054479 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2996363 ]
[0.31534865]
[0.7196789 ]
[0.61504483]
[0.7484698 ]
[0.90554965]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29940477]
[0.3151493 ]
[0.719697 ]
[0.61504304]
[0.74855465]
[0.90565103]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29917365]
[0.31495044]
[0.71971494]
[0.6150414 ]
[0.74863935]
[0.9057521 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29894292]
[0.314752 ]
[0.71973276]
[0.61503977]
[0.748724 ]
[0.905853 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29871267]
[0.3145541 ]
[0.7197504 ]
[0.6150382 ]
[0.7488085 ]
[0.90595365]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29848287]
[0.31435657]
[0.71976787]
[0.6150368 ]
[0.7488929 ]
[0.90605396]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29825348]
[0.31415957]
[0.7197851 ]
[0.6150354 ]
[0.74897724]
[0.90615386]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29802454]
[0.31396297]
[0.7198022 ]
[0.61503416]
[0.7490615 ]
[0.90625364]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.297796 ]
[0.3137669 ]
[0.7198192 ]
[0.6150329 ]
[0.7491457 ]
[0.90635324]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2975679]
[0.3135712]
[0.7198359]
[0.6150318]
[0.7492296]
[0.9064523]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29734027]
[0.313376 ]
[0.7198525 ]
[0.61503077]
[0.74931365]
[0.90655124]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29711306]
[0.31318128]
[0.7198689 ]
[0.6150298 ]
[0.7493975 ]
[0.90664995]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29688627]
[0.31298697]
[0.7198851 ]
[0.615029 ]
[0.74948126]
[0.9067483 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29665986]
[0.3127931 ]
[0.71990114]
[0.61502814]
[0.74956495]
[0.90684646]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29643393]
[0.31259972]
[0.71991706]
[0.6150274 ]
[0.7496486 ]
[0.9069443 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29620838]
[0.31240678]
[0.7199328 ]
[0.6150268 ]
[0.7497321 ]
[0.90704185]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29598328]
[0.31221426]
[0.7199483 ]
[0.6150262 ]
[0.7498154 ]
[0.9071392 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2957586 ]
[0.31202215]
[0.71996367]
[0.61502564]
[0.7498987 ]
[0.9072362 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2955343 ]
[0.31183055]
[0.7199788 ]
[0.6150252 ]
[0.74998194]
[0.90733296]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29531044]
[0.31163937]
[0.7199938 ]
[0.61502486]
[0.750065 ]
[0.9074295 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.295087 ]
[0.3114487 ]
[0.7200087 ]
[0.61502457]
[0.75014806]
[0.9075257 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29486397]
[0.31125832]
[0.72002333]
[0.6150244 ]
[0.7502309 ]
[0.9076218 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29464138]
[0.31106848]
[0.7200379 ]
[0.6150242 ]
[0.7503138 ]
[0.9077174 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29441917]
[0.31087905]
[0.7200522 ]
[0.6150242 ]
[0.75039655]
[0.9078129 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29419744]
[0.31069005]
[0.7200663 ]
[0.6150242 ]
[0.7504791 ]
[0.90790814]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29397607]
[0.31050152]
[0.7200804 ]
[0.6150243 ]
[0.7505617 ]
[0.90800303]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29375505]
[0.31031337]
[0.72009414]
[0.61502445]
[0.75064415]
[0.9080977 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29353455]
[0.31012565]
[0.7201078 ]
[0.6150247 ]
[0.75072646]
[0.9081922 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2933144 ]
[0.30993837]
[0.72012126]
[0.6150249 ]
[0.7508087 ]
[0.9082863 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29309466]
[0.30975154]
[0.7201346 ]
[0.6150253 ]
[0.75089085]
[0.9083802 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29287535]
[0.30956513]
[0.7201477 ]
[0.6150257 ]
[0.7509729 ]
[0.9084739 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29265642]
[0.30937913]
[0.7201607 ]
[0.61502624]
[0.75105494]
[0.90856737]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2924379 ]
[0.3091936 ]
[0.7201735 ]
[0.61502683]
[0.7511368 ]
[0.9086605 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29221976]
[0.30900848]
[0.7201862 ]
[0.6150275 ]
[0.75121856]
[0.9087534 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29200208]
[0.30882376]
[0.72019863]
[0.6150282 ]
[0.75130033]
[0.908846 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29178476]
[0.30863947]
[0.7202109 ]
[0.61502904]
[0.75138193]
[0.9089384 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29156786]
[0.30845562]
[0.72022307]
[0.6150299 ]
[0.7514634 ]
[0.9090306 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29135132]
[0.30827212]
[0.720235 ]
[0.6150308 ]
[0.7515449 ]
[0.9091225 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2911352 ]
[0.30808908]
[0.72024685]
[0.6150318 ]
[0.7516262 ]
[0.90921414]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29091948]
[0.30790645]
[0.7202585 ]
[0.61503285]
[0.7517074 ]
[0.9093055 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29070413]
[0.30772424]
[0.7202699 ]
[0.6150339 ]
[0.75178844]
[0.9093967 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2904892 ]
[0.30754244]
[0.72028124]
[0.6150352 ]
[0.7518695 ]
[0.9094876 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.29027462]
[0.30736104]
[0.7202924 ]
[0.6150364 ]
[0.7519505 ]
[0.9095782 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2900605 ]
[0.30718005]
[0.7203034 ]
[0.61503774]
[0.7520313 ]
[0.90966856]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28984672]
[0.3069995 ]
[0.72031426]
[0.6150391 ]
[0.7521121 ]
[0.90975887]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2896334 ]
[0.30681935]
[0.72032493]
[0.6150406 ]
[0.7521928 ]
[0.90984875]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28942043]
[0.3066396 ]
[0.72033536]
[0.61504215]
[0.7522734 ]
[0.90993845]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28920782]
[0.30646032]
[0.72034574]
[0.6150438 ]
[0.75235385]
[0.9100279 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28899562]
[0.3062814 ]
[0.720356 ]
[0.6150455 ]
[0.7524343 ]
[0.91011715]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2887838 ]
[0.30610287]
[0.720366 ]
[0.6150472 ]
[0.75251466]
[0.91020614]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28857237]
[0.30592474]
[0.72037584]
[0.61504906]
[0.7525949 ]
[0.9102949 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2883613 ]
[0.30574703]
[0.72038555]
[0.615051 ]
[0.75267506]
[0.91038346]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28815064]
[0.3055697 ]
[0.7203951 ]
[0.6150529 ]
[0.7527551 ]
[0.9104717 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28794038]
[0.30539283]
[0.72040445]
[0.6150549 ]
[0.7528351 ]
[0.9105597 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28773046]
[0.30521634]
[0.7204137 ]
[0.615057 ]
[0.75291497]
[0.9106475 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28752095]
[0.30504024]
[0.72042274]
[0.6150592 ]
[0.7529947 ]
[0.910735 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2873118 ]
[0.30486453]
[0.7204317 ]
[0.6150614 ]
[0.75307447]
[0.9108224 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28710306]
[0.30468923]
[0.72044045]
[0.6150637 ]
[0.75315404]
[0.91090953]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28689468]
[0.3045143 ]
[0.72044903]
[0.61506605]
[0.7532336 ]
[0.91099644]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28668666]
[0.3043397 ]
[0.72045743]
[0.61506844]
[0.753313 ]
[0.911083 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28647903]
[0.3041656 ]
[0.72046566]
[0.6150709 ]
[0.75339234]
[0.91116935]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28627175]
[0.30399185]
[0.72047377]
[0.6150734 ]
[0.75347155]
[0.9112556 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28606486]
[0.3038185 ]
[0.72048175]
[0.615076 ]
[0.7535507 ]
[0.91134155]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28585833]
[0.3036455 ]
[0.72048956]
[0.61507857]
[0.7536297 ]
[0.91142726]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2856522 ]
[0.30347294]
[0.72049725]
[0.61508137]
[0.7537087 ]
[0.91151273]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28544644]
[0.30330074]
[0.72050476]
[0.61508423]
[0.75378764]
[0.911598 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.285241 ]
[0.303129 ]
[0.7205121 ]
[0.6150871 ]
[0.7538665 ]
[0.91168314]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28503597]
[0.30295753]
[0.7205193 ]
[0.61509 ]
[0.75394523]
[0.91176796]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
700 0.47200763
hypothesis: [[0.28483132]
[0.30278653]
[0.72052634]
[0.615093 ]
[0.7540239 ]
[0.9118526 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28462702]
[0.30261588]
[0.72053325]
[0.61509603]
[0.7541024 ]
[0.91193694]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28442305]
[0.3024456 ]
[0.7205399 ]
[0.61509913]
[0.75418085]
[0.9120211 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2842195 ]
[0.30227572]
[0.72054654]
[0.6151023 ]
[0.7542593 ]
[0.912105 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28401625]
[0.3021062 ]
[0.720553 ]
[0.61510557]
[0.75433755]
[0.9121887 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28381342]
[0.30193704]
[0.72055924]
[0.61510885]
[0.75441575]
[0.9122723 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28361094]
[0.30176833]
[0.7205654 ]
[0.61511225]
[0.7544939 ]
[0.9123555 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2834088 ]
[0.30159992]
[0.7205714 ]
[0.61511564]
[0.75457186]
[0.9124386 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28320706]
[0.30143195]
[0.7205772 ]
[0.6151191 ]
[0.7546498 ]
[0.9125214 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2830056 ]
[0.3012643 ]
[0.72058284]
[0.6151226 ]
[0.7547276 ]
[0.91260403]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28280455]
[0.30109704]
[0.7205883 ]
[0.61512625]
[0.7548054 ]
[0.91268647]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28260386]
[0.30093014]
[0.7205937 ]
[0.6151299 ]
[0.75488305]
[0.9127686 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28240353]
[0.30076367]
[0.72059894]
[0.6151336 ]
[0.7549607 ]
[0.9128506 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28220356]
[0.3005975 ]
[0.720604 ]
[0.6151374 ]
[0.7550382 ]
[0.9129324 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28200394]
[0.30043173]
[0.72060895]
[0.6151413 ]
[0.7551156 ]
[0.913014 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28180462]
[0.30026633]
[0.7206137 ]
[0.61514515]
[0.755193 ]
[0.91309524]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28160572]
[0.30010128]
[0.72061837]
[0.61514914]
[0.7552702 ]
[0.91317636]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28140712]
[0.29993662]
[0.7206228 ]
[0.61515313]
[0.7553474 ]
[0.9132573 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2812089 ]
[0.29977226]
[0.7206271 ]
[0.6151572 ]
[0.75542444]
[0.91333807]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28101102]
[0.29960835]
[0.7206313 ]
[0.61516136]
[0.7555015 ]
[0.9134185 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28081346]
[0.29944474]
[0.72063535]
[0.61516553]
[0.7555784 ]
[0.91349876]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28061628]
[0.2992815 ]
[0.7206393 ]
[0.61516976]
[0.75565517]
[0.91357887]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28041947]
[0.2991187 ]
[0.720643 ]
[0.61517406]
[0.75573194]
[0.91365874]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28022295]
[0.29895616]
[0.72064656]
[0.61517847]
[0.7558086 ]
[0.91373837]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.28002685]
[0.29879403]
[0.72065 ]
[0.6151829 ]
[0.7558852 ]
[0.9138179 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27983105]
[0.2986322 ]
[0.7206533 ]
[0.61518735]
[0.75596166]
[0.91389716]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27963555]
[0.2984708 ]
[0.72065645]
[0.6151919 ]
[0.75603807]
[0.91397613]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27944046]
[0.29830968]
[0.7206595 ]
[0.61519647]
[0.75611436]
[0.914055 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27924567]
[0.29814905]
[0.72066236]
[0.6152012 ]
[0.75619066]
[0.91413355]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27905124]
[0.29798865]
[0.72066504]
[0.6152059 ]
[0.7562668 ]
[0.9142121 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27885717]
[0.2978286 ]
[0.7206676 ]
[0.6152106 ]
[0.7563429 ]
[0.9142903 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27866334]
[0.29766893]
[0.72067004]
[0.6152154 ]
[0.75641876]
[0.91436833]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27846992]
[0.2975096 ]
[0.72067237]
[0.61522025]
[0.75649464]
[0.9144462 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27827686]
[0.29735065]
[0.72067446]
[0.6152252 ]
[0.75657046]
[0.9145237 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2780841 ]
[0.297192 ]
[0.7206765 ]
[0.61523014]
[0.75664616]
[0.9146012 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2778917 ]
[0.29703373]
[0.7206783 ]
[0.61523515]
[0.7567218 ]
[0.9146784 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2776996 ]
[0.29687583]
[0.72068006]
[0.6152403 ]
[0.7567974 ]
[0.9147554 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27750784]
[0.29671824]
[0.7206816 ]
[0.61524546]
[0.75687283]
[0.9148323 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27731642]
[0.296561 ]
[0.72068304]
[0.61525065]
[0.7569483 ]
[0.91490895]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27712536]
[0.29640418]
[0.72068435]
[0.61525595]
[0.7570237 ]
[0.91498536]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2769346 ]
[0.2962476 ]
[0.7206855 ]
[0.61526126]
[0.7570988 ]
[0.91506165]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2767442 ]
[0.29609138]
[0.7206865 ]
[0.6152666 ]
[0.757174 ]
[0.9151377 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2765541 ]
[0.29593554]
[0.72068745]
[0.61527205]
[0.75724906]
[0.9152136 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27636433]
[0.29578003]
[0.72068816]
[0.61527747]
[0.757324 ]
[0.91528916]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2761749 ]
[0.29562485]
[0.72068876]
[0.6152831 ]
[0.7573989 ]
[0.9153647 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2759858 ]
[0.29547006]
[0.7206892 ]
[0.6152887 ]
[0.7574739 ]
[0.9154399 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.275797 ]
[0.29531556]
[0.72068954]
[0.61529434]
[0.7575486 ]
[0.91551507]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2756086 ]
[0.2951614 ]
[0.7206897 ]
[0.6153 ]
[0.75762314]
[0.91559 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27542043]
[0.2950076 ]
[0.7206897 ]
[0.6153058 ]
[0.7576978 ]
[0.9156647 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27523264]
[0.29485407]
[0.7206896 ]
[0.6153116 ]
[0.7577723 ]
[0.9157391 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27504516]
[0.29470098]
[0.7206894 ]
[0.6153175 ]
[0.75784683]
[0.9158135 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.274858 ]
[0.29454812]
[0.720689 ]
[0.6153234 ]
[0.7579211 ]
[0.9158877 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27467114]
[0.29439563]
[0.72068846]
[0.6153293 ]
[0.7579953 ]
[0.91596156]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27448463]
[0.29424345]
[0.72068787]
[0.61533535]
[0.7580695 ]
[0.9160353 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27429843]
[0.2940916 ]
[0.7206871 ]
[0.61534137]
[0.7581436 ]
[0.91610897]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27411252]
[0.29394013]
[0.7206862 ]
[0.6153475 ]
[0.75821763]
[0.9161823 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27392697]
[0.29378897]
[0.7206851 ]
[0.6153537 ]
[0.75829154]
[0.91625553]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2737417 ]
[0.2936381 ]
[0.7206839 ]
[0.6153599 ]
[0.75836545]
[0.9163285 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27355677]
[0.29348755]
[0.72068256]
[0.61536616]
[0.75843924]
[0.9164014 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27337214]
[0.29333737]
[0.7206811 ]
[0.61537254]
[0.7585129 ]
[0.9164739 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27318785]
[0.29318753]
[0.7206795 ]
[0.6153789 ]
[0.7585866 ]
[0.91654646]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27300385]
[0.293038 ]
[0.72067785]
[0.6153853 ]
[0.75866014]
[0.91661876]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27282017]
[0.29288876]
[0.72067595]
[0.61539185]
[0.7587335 ]
[0.9166909 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2726368 ]
[0.29273987]
[0.7206739 ]
[0.61539835]
[0.7588069 ]
[0.9167628 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27245373]
[0.29259127]
[0.7206718 ]
[0.6154049 ]
[0.7588802 ]
[0.91683453]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27227098]
[0.29244298]
[0.7206695 ]
[0.61541146]
[0.7589534 ]
[0.916906 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27208853]
[0.29229504]
[0.7206671 ]
[0.61541814]
[0.7590265 ]
[0.91697735]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27190644]
[0.29214746]
[0.72066456]
[0.61542493]
[0.7590996 ]
[0.91704863]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27172458]
[0.29200011]
[0.7206619 ]
[0.61543167]
[0.75917256]
[0.9171196 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2715431 ]
[0.29185313]
[0.7206591 ]
[0.61543846]
[0.75924546]
[0.9171905 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2713619 ]
[0.29170644]
[0.72065616]
[0.6154454 ]
[0.75931835]
[0.91726124]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27118096]
[0.29156014]
[0.7206531 ]
[0.6154523 ]
[0.75939107]
[0.91733164]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27100036]
[0.29141408]
[0.7206499 ]
[0.61545926]
[0.7594637 ]
[0.91740197]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2708201 ]
[0.29126838]
[0.7206466 ]
[0.6154663 ]
[0.7595363 ]
[0.9174721 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2706401 ]
[0.291123 ]
[0.7206431 ]
[0.61547345]
[0.7596089 ]
[0.91754204]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27046043]
[0.29097787]
[0.7206396 ]
[0.6154805 ]
[0.75968134]
[0.9176119 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27028102]
[0.2908331 ]
[0.7206358 ]
[0.6154877 ]
[0.75975364]
[0.91768146]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.27010196]
[0.2906886 ]
[0.720632 ]
[0.6154949 ]
[0.759826 ]
[0.91775095]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26992315]
[0.29054445]
[0.720628 ]
[0.6155022 ]
[0.7598982 ]
[0.9178202 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2697447 ]
[0.29040062]
[0.7206239 ]
[0.6155095 ]
[0.7599703 ]
[0.91788936]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26956654]
[0.29025704]
[0.7206198 ]
[0.6155169 ]
[0.7600424 ]
[0.91795826]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26938862]
[0.2901138 ]
[0.7206154 ]
[0.61552435]
[0.7601145 ]
[0.91802704]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26921102]
[0.28997087]
[0.7206109 ]
[0.6155318 ]
[0.7601863 ]
[0.9180956 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26903373]
[0.28982824]
[0.7206062 ]
[0.6155393 ]
[0.7602581 ]
[0.918164 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26885676]
[0.2896859 ]
[0.7206015 ]
[0.6155468 ]
[0.76032984]
[0.91823226]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26868004]
[0.28954387]
[0.7205966 ]
[0.6155544 ]
[0.7604014 ]
[0.9183003 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26850367]
[0.28940216]
[0.7205916 ]
[0.615562 ]
[0.7604731 ]
[0.91836816]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26832753]
[0.2892607 ]
[0.7205864 ]
[0.6155697 ]
[0.76054466]
[0.91843593]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2681517 ]
[0.2891196 ]
[0.7205812 ]
[0.61557746]
[0.760616 ]
[0.9185035 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26797616]
[0.28897876]
[0.7205758 ]
[0.61558527]
[0.7606874 ]
[0.9185709 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26780096]
[0.2888383 ]
[0.7205703 ]
[0.61559314]
[0.7607587 ]
[0.91863817]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26762605]
[0.2886981 ]
[0.7205647 ]
[0.61560106]
[0.76083 ]
[0.91870517]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26745135]
[0.28855816]
[0.720559 ]
[0.615609 ]
[0.7609011 ]
[0.9187722 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.267277 ]
[0.28841853]
[0.7205531 ]
[0.615617 ]
[0.7609721 ]
[0.9188389 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2671029 ]
[0.28827924]
[0.7205471 ]
[0.615625 ]
[0.7610432 ]
[0.91890544]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26692915]
[0.2881402 ]
[0.720541 ]
[0.6156331 ]
[0.76111406]
[0.9189719 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26675564]
[0.28800142]
[0.7205347 ]
[0.6156412 ]
[0.76118493]
[0.9190382 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2665824 ]
[0.287863 ]
[0.72052836]
[0.61564934]
[0.7612557 ]
[0.9191042 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26640946]
[0.28772485]
[0.7205218 ]
[0.61565757]
[0.7613265 ]
[0.91917014]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26623684]
[0.28758705]
[0.7205152 ]
[0.61566585]
[0.7613971 ]
[0.91923594]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
800 0.46088958
hypothesis: [[0.26606447]
[0.28744948]
[0.72050846]
[0.61567414]
[0.7614676 ]
[0.9193015 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26589245]
[0.2873122 ]
[0.7205016 ]
[0.6156825 ]
[0.7615381 ]
[0.919367 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26572064]
[0.28717524]
[0.7204946 ]
[0.6156909 ]
[0.7616085 ]
[0.9194323 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26554912]
[0.28703853]
[0.7204875 ]
[0.6156993 ]
[0.7616788 ]
[0.91949743]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2653779 ]
[0.28690213]
[0.72048026]
[0.6157078 ]
[0.7617491 ]
[0.9195624 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26520693]
[0.28676605]
[0.7204729 ]
[0.61571634]
[0.7618193 ]
[0.91962713]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26503628]
[0.2866302 ]
[0.72046536]
[0.6157249 ]
[0.7618894 ]
[0.9196918 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26486593]
[0.28649467]
[0.7204578 ]
[0.61573356]
[0.76195943]
[0.9197563 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26469582]
[0.28635943]
[0.72045004]
[0.6157422 ]
[0.76202935]
[0.91982067]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.264526 ]
[0.28622448]
[0.7204423 ]
[0.6157509 ]
[0.76209927]
[0.9198849 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26435643]
[0.28608978]
[0.72043425]
[0.6157597 ]
[0.7621691 ]
[0.9199489 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26418713]
[0.28595537]
[0.72042614]
[0.61576843]
[0.76223886]
[0.9200127 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26401812]
[0.28582123]
[0.7204179 ]
[0.61577725]
[0.7623085 ]
[0.92007643]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26384938]
[0.2856874 ]
[0.72040963]
[0.6157861 ]
[0.76237804]
[0.92013997]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26368096]
[0.28555384]
[0.72040117]
[0.615795 ]
[0.76244754]
[0.92020345]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2635128 ]
[0.28542057]
[0.7203925 ]
[0.61580396]
[0.76251704]
[0.9202667 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26334488]
[0.28528756]
[0.7203839 ]
[0.61581296]
[0.76258636]
[0.92032975]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26317728]
[0.28515488]
[0.72037506]
[0.615822 ]
[0.7626558 ]
[0.9203927 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2630099 ]
[0.2850224 ]
[0.7203661 ]
[0.6158311 ]
[0.76272494]
[0.9204555 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26284277]
[0.28489023]
[0.72035706]
[0.6158402 ]
[0.7627941 ]
[0.9205181 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.262676 ]
[0.28475833]
[0.72034794]
[0.6158494 ]
[0.76286316]
[0.9205806 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26250944]
[0.28462672]
[0.72033864]
[0.61585855]
[0.7629321 ]
[0.920643 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26234317]
[0.2844954 ]
[0.7203292 ]
[0.61586785]
[0.76300114]
[0.92070514]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26217714]
[0.2843643 ]
[0.7203197 ]
[0.6158771 ]
[0.76307 ]
[0.9207672 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2620114 ]
[0.28423354]
[0.7203101 ]
[0.61588645]
[0.76313883]
[0.92082906]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26184592]
[0.284103 ]
[0.7203003 ]
[0.61589587]
[0.76320755]
[0.9208908 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26168072]
[0.2839728 ]
[0.7202905 ]
[0.6159053 ]
[0.7632762 ]
[0.9209525 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26151577]
[0.28384283]
[0.7202804 ]
[0.6159147 ]
[0.76334476]
[0.92101383]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2613511 ]
[0.2837131 ]
[0.7202704 ]
[0.61592424]
[0.76341325]
[0.92107517]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2611867 ]
[0.2835837 ]
[0.72026014]
[0.6159338 ]
[0.7634818 ]
[0.9211363 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26102257]
[0.28345454]
[0.72024983]
[0.6159434 ]
[0.76355016]
[0.9211973 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26085865]
[0.2833256 ]
[0.72023934]
[0.61595297]
[0.7636184 ]
[0.92125815]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.260695 ]
[0.28319705]
[0.72022873]
[0.6159627 ]
[0.7636867 ]
[0.9213188 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26053166]
[0.28306866]
[0.72021806]
[0.61597234]
[0.76375484]
[0.92137945]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26036856]
[0.28294057]
[0.72020733]
[0.6159821 ]
[0.7638229 ]
[0.9214399 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26020575]
[0.28281277]
[0.7201964 ]
[0.61599195]
[0.7638909 ]
[0.9215001 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.26004314]
[0.28268522]
[0.7201854 ]
[0.6160017 ]
[0.763959 ]
[0.9215602 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25988084]
[0.2825579 ]
[0.72017425]
[0.6160116 ]
[0.7640268 ]
[0.92162025]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25971878]
[0.28243095]
[0.72016305]
[0.6160216 ]
[0.76409465]
[0.9216801 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.259557 ]
[0.2823041 ]
[0.72015166]
[0.6160315 ]
[0.7641625 ]
[0.9217399 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25939548]
[0.28217763]
[0.72014016]
[0.6160415 ]
[0.76423013]
[0.9217994 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2592342 ]
[0.28205144]
[0.72012854]
[0.61605155]
[0.7642977 ]
[0.9218588 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25907314]
[0.28192544]
[0.7201168 ]
[0.61606157]
[0.76436526]
[0.92191803]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25891235]
[0.28179967]
[0.720105 ]
[0.61607164]
[0.76443267]
[0.9219772 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25875184]
[0.2816742 ]
[0.7200931 ]
[0.6160818 ]
[0.7645 ]
[0.92203623]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25859156]
[0.28154904]
[0.72008103]
[0.616092 ]
[0.7645674 ]
[0.9220951 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25843155]
[0.2814241 ]
[0.72006893]
[0.6161022 ]
[0.76463467]
[0.9221538 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2582718 ]
[0.2812994 ]
[0.72005665]
[0.61611253]
[0.76470184]
[0.92221236]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2581123 ]
[0.28117496]
[0.72004426]
[0.61612284]
[0.7647691 ]
[0.9222708 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25795305]
[0.28105086]
[0.7200318 ]
[0.61613315]
[0.76483613]
[0.92232907]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25779405]
[0.28092694]
[0.7200192 ]
[0.6161436 ]
[0.76490307]
[0.9223873 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2576353 ]
[0.28080323]
[0.72000647]
[0.61615396]
[0.76497 ]
[0.9224453 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25747684]
[0.28067982]
[0.7199936 ]
[0.6161644 ]
[0.7650369 ]
[0.9225032 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2573186 ]
[0.28055674]
[0.7199807 ]
[0.61617494]
[0.76510364]
[0.922561 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2571606 ]
[0.2804339 ]
[0.71996766]
[0.6161855 ]
[0.76517045]
[0.9226185 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25700283]
[0.2803112 ]
[0.7199545 ]
[0.61619604]
[0.76523703]
[0.922676 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25684536]
[0.28018883]
[0.71994126]
[0.61620665]
[0.7653036 ]
[0.92273337]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25668812]
[0.28006667]
[0.7199279 ]
[0.61621726]
[0.76537013]
[0.92279065]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25653112]
[0.27994484]
[0.71991444]
[0.61622804]
[0.7654366 ]
[0.9228477 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25637436]
[0.27982318]
[0.7199008 ]
[0.6162387 ]
[0.7655029 ]
[0.9229047 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25621778]
[0.27970177]
[0.71988714]
[0.61624944]
[0.76556927]
[0.9229614 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25606158]
[0.27958065]
[0.7198733 ]
[0.6162603 ]
[0.76563555]
[0.9230181 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2559055 ]
[0.27945977]
[0.7198594 ]
[0.61627114]
[0.76570165]
[0.92307466]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25574976]
[0.27933908]
[0.71984535]
[0.616282 ]
[0.7657679 ]
[0.92313105]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2555942 ]
[0.27921873]
[0.7198312 ]
[0.61629295]
[0.7658339 ]
[0.9231873 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25543886]
[0.27909857]
[0.71981704]
[0.6163039 ]
[0.76589996]
[0.9232435 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25528383]
[0.2789787 ]
[0.7198027 ]
[0.6163149 ]
[0.7659658 ]
[0.9232995 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.255129 ]
[0.27885902]
[0.7197882 ]
[0.61632586]
[0.76603174]
[0.9233554 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25497448]
[0.2787396 ]
[0.71977365]
[0.61633694]
[0.7660975 ]
[0.9234112 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25482017]
[0.27862042]
[0.719759 ]
[0.6163481 ]
[0.7661632 ]
[0.9234668 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25466606]
[0.2785015 ]
[0.7197442 ]
[0.6163592 ]
[0.7662289 ]
[0.9235223 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2545122 ]
[0.27838278]
[0.7197293 ]
[0.6163703 ]
[0.7662944 ]
[0.9235776 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2543586 ]
[0.27826437]
[0.7197143 ]
[0.6163815 ]
[0.7663599 ]
[0.9236329 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25420517]
[0.27814615]
[0.7196992 ]
[0.61639273]
[0.7664254 ]
[0.92368793]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2540521 ]
[0.27802825]
[0.719684 ]
[0.61640406]
[0.7664908 ]
[0.923743 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25389916]
[0.2779105 ]
[0.71966875]
[0.6164153 ]
[0.7665561 ]
[0.92379785]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2537465 ]
[0.27779302]
[0.7196533 ]
[0.6164267 ]
[0.7666213 ]
[0.92385256]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2535941 ]
[0.2776758 ]
[0.7196378 ]
[0.61643815]
[0.7666866 ]
[0.9239072 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25344193]
[0.2775588 ]
[0.7196222 ]
[0.61644953]
[0.7667517 ]
[0.92396164]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25329 ]
[0.27744204]
[0.71960646]
[0.616461 ]
[0.76681674]
[0.924016 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25313824]
[0.2773255 ]
[0.71959066]
[0.6164725 ]
[0.76688176]
[0.9240701 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2529868 ]
[0.27720922]
[0.71957475]
[0.61648405]
[0.76694673]
[0.9241243 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2528355 ]
[0.27709317]
[0.71955866]
[0.61649555]
[0.7670116 ]
[0.92417824]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25268447]
[0.2769774 ]
[0.71954256]
[0.6165072 ]
[0.76707643]
[0.9242321 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2525337 ]
[0.2768618 ]
[0.7195263 ]
[0.6165188 ]
[0.76714116]
[0.9242859 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25238317]
[0.27674645]
[0.71950996]
[0.6165305 ]
[0.7672059 ]
[0.9243395 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25223282]
[0.27663136]
[0.7194935 ]
[0.61654216]
[0.76727045]
[0.92439294]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2520827 ]
[0.27651644]
[0.719477 ]
[0.6165539 ]
[0.76733506]
[0.92444634]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25193286]
[0.27640182]
[0.7194603 ]
[0.6165657 ]
[0.76739955]
[0.9244995 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2517832 ]
[0.27628738]
[0.71944356]
[0.6165775 ]
[0.7674639 ]
[0.92455256]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25163376]
[0.27617323]
[0.7194267 ]
[0.61658937]
[0.76752836]
[0.92460555]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25148463]
[0.27605924]
[0.7194097 ]
[0.6166012 ]
[0.7675926 ]
[0.92465836]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25133568]
[0.27594554]
[0.71939266]
[0.6166131 ]
[0.7676568 ]
[0.92471117]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25118694]
[0.27583203]
[0.7193755 ]
[0.6166251 ]
[0.76772106]
[0.9247638 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25103843]
[0.27571872]
[0.71935827]
[0.616637 ]
[0.7677851 ]
[0.92481625]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25089014]
[0.27560568]
[0.7193409 ]
[0.616649 ]
[0.7678491 ]
[0.9248687 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2507421 ]
[0.27549288]
[0.7193234 ]
[0.616661 ]
[0.76791316]
[0.9249209 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25059426]
[0.27538028]
[0.7193059 ]
[0.6166731 ]
[0.76797706]
[0.92497313]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25044668]
[0.27526796]
[0.7192882 ]
[0.6166853 ]
[0.76804096]
[0.92502505]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25029933]
[0.27515584]
[0.71927047]
[0.61669743]
[0.76810473]
[0.9250771 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
900 0.45088795
hypothesis: [[0.25015217]
[0.2750439 ]
[0.7192526 ]
[0.6167096 ]
[0.7681685 ]
[0.92512876]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.25000522]
[0.27493224]
[0.7192346 ]
[0.6167218 ]
[0.76823217]
[0.92518044]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24985853]
[0.27482074]
[0.71921647]
[0.616734 ]
[0.76829576]
[0.92523193]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24971205]
[0.27470952]
[0.7191983 ]
[0.6167463 ]
[0.76835924]
[0.9252834 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24956578]
[0.2745985 ]
[0.71918 ]
[0.6167586 ]
[0.7684227 ]
[0.9253347 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24941972]
[0.2744877 ]
[0.7191616 ]
[0.6167709 ]
[0.76848614]
[0.92538583]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24927393]
[0.27437717]
[0.71914315]
[0.61678326]
[0.7685495 ]
[0.92543703]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24912834]
[0.27426678]
[0.71912456]
[0.61679566]
[0.7686128 ]
[0.92548794]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2489829 ]
[0.2741567 ]
[0.71910596]
[0.6168081 ]
[0.76867604]
[0.9255388 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24883777]
[0.27404678]
[0.7190872 ]
[0.6168206 ]
[0.76873916]
[0.92558944]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24869278]
[0.27393705]
[0.7190683 ]
[0.61683303]
[0.7688023 ]
[0.9256401 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24854809]
[0.2738276 ]
[0.71904933]
[0.61684555]
[0.7688653 ]
[0.9256906 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24840358]
[0.27371836]
[0.71903026]
[0.6168581 ]
[0.7689283 ]
[0.92574096]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24825928]
[0.27360934]
[0.7190112 ]
[0.61687076]
[0.76899123]
[0.9257913 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24811521]
[0.27350056]
[0.71899194]
[0.61688346]
[0.7690541 ]
[0.92584145]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24797139]
[0.27339196]
[0.71897256]
[0.61689615]
[0.76911706]
[0.92589146]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24782771]
[0.2732836 ]
[0.71895313]
[0.61690885]
[0.7691797 ]
[0.9259414 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24768427]
[0.27317548]
[0.7189336 ]
[0.61692154]
[0.7692425 ]
[0.9259912 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2475411 ]
[0.27306747]
[0.718914 ]
[0.6169343 ]
[0.7693051 ]
[0.926041 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24739805]
[0.27295977]
[0.7188942 ]
[0.6169471 ]
[0.7693677 ]
[0.92609054]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2472553 ]
[0.27285224]
[0.7188744 ]
[0.6169599 ]
[0.76943016]
[0.92614007]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24711269]
[0.272745 ]
[0.7188545 ]
[0.6169728 ]
[0.7694926 ]
[0.9261894 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24697036]
[0.27263793]
[0.71883446]
[0.61698574]
[0.76955503]
[0.92623866]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24682823]
[0.2725311 ]
[0.7188144 ]
[0.6169987 ]
[0.7696174 ]
[0.92628783]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24668628]
[0.27242443]
[0.71879417]
[0.6170116 ]
[0.76967967]
[0.92633694]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24654457]
[0.27231795]
[0.71877384]
[0.6170246 ]
[0.7697419 ]
[0.9263858 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24640301]
[0.27221176]
[0.71875346]
[0.61703765]
[0.76980406]
[0.92643464]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24626172]
[0.2721057 ]
[0.71873295]
[0.61705065]
[0.76986617]
[0.92648345]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2461206 ]
[0.2719999 ]
[0.7187124 ]
[0.61706376]
[0.7699282 ]
[0.9265319 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24597976]
[0.27189428]
[0.7186917 ]
[0.6170769 ]
[0.7699902 ]
[0.9265804 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24583903]
[0.2717889 ]
[0.7186709 ]
[0.61709005]
[0.7700521 ]
[0.9266289 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24569854]
[0.2716837 ]
[0.7186501 ]
[0.61710316]
[0.7701139 ]
[0.92667717]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24555832]
[0.27157873]
[0.7186291 ]
[0.6171164 ]
[0.77017576]
[0.92672527]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24541828]
[0.27147397]
[0.718608 ]
[0.6171296 ]
[0.7702375 ]
[0.9267734 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24527842]
[0.2713694 ]
[0.7185869 ]
[0.61714286]
[0.7702991 ]
[0.92682135]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24513873]
[0.27126503]
[0.71856564]
[0.61715615]
[0.77036077]
[0.92686915]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24499935]
[0.2711609 ]
[0.7185443 ]
[0.6171695 ]
[0.77042234]
[0.9269169 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24486008]
[0.27105698]
[0.7185229 ]
[0.6171829 ]
[0.7704839 ]
[0.92696464]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24472108]
[0.27095324]
[0.7185014 ]
[0.6171963 ]
[0.7705453 ]
[0.92701215]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24458224]
[0.2708497 ]
[0.71847975]
[0.6172097 ]
[0.7706067 ]
[0.9270595 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24444363]
[0.27074635]
[0.71845806]
[0.61722314]
[0.7706681 ]
[0.9271068 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2443052 ]
[0.27064323]
[0.71843624]
[0.6172366 ]
[0.77072924]
[0.92715406]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.244167 ]
[0.27054033]
[0.71841437]
[0.6172501 ]
[0.7707905 ]
[0.9272012 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24402893]
[0.2704376 ]
[0.7183924 ]
[0.6172636 ]
[0.7708517 ]
[0.92724824]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24389115]
[0.27033508]
[0.7183703 ]
[0.61727715]
[0.77091277]
[0.9272951 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24375352]
[0.2702327 ]
[0.71834815]
[0.61729074]
[0.7709738 ]
[0.9273418 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2436161 ]
[0.2701306 ]
[0.7183259 ]
[0.6173043 ]
[0.7710347 ]
[0.92738855]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24347895]
[0.2700287 ]
[0.71830344]
[0.617318 ]
[0.7710957 ]
[0.9274351 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24334192]
[0.26992702]
[0.7182811 ]
[0.61733174]
[0.77115667]
[0.92748165]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24320507]
[0.26982546]
[0.7182585 ]
[0.6173454 ]
[0.77121735]
[0.927528 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24306843]
[0.26972413]
[0.71823585]
[0.6173591 ]
[0.77127814]
[0.9275743 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24293202]
[0.26962304]
[0.71821314]
[0.6173729 ]
[0.7713388 ]
[0.9276204 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2427958 ]
[0.26952207]
[0.7181904 ]
[0.61738664]
[0.77139944]
[0.9276665 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24265978]
[0.26942134]
[0.7181674 ]
[0.61740047]
[0.77146006]
[0.92771244]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24252397]
[0.26932085]
[0.7181445 ]
[0.6174143 ]
[0.77152056]
[0.92775846]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24238831]
[0.2692205 ]
[0.7181214 ]
[0.6174282 ]
[0.77158093]
[0.9278042 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24225295]
[0.26912045]
[0.7180983 ]
[0.6174421 ]
[0.77164143]
[0.9278499 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2421177 ]
[0.26902044]
[0.71807504]
[0.617456 ]
[0.77170175]
[0.9278954 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24198267]
[0.26892072]
[0.7180517 ]
[0.61746997]
[0.771762 ]
[0.9279409 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24184781]
[0.26882115]
[0.7180283 ]
[0.6174839 ]
[0.7718223 ]
[0.92798626]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24171314]
[0.26872176]
[0.7180047 ]
[0.6174979 ]
[0.7718825 ]
[0.92803156]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24157873]
[0.26862264]
[0.7179811 ]
[0.617512 ]
[0.7719426 ]
[0.92807674]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24144447]
[0.2685237 ]
[0.7179574 ]
[0.6175261 ]
[0.77200276]
[0.9281218 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24131039]
[0.26842496]
[0.71793365]
[0.61754024]
[0.7720628 ]
[0.9281668 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24117652]
[0.26832634]
[0.7179098 ]
[0.6175543 ]
[0.7721227 ]
[0.9282117 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24104282]
[0.268228 ]
[0.71788585]
[0.6175685 ]
[0.7721825 ]
[0.92825645]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24090937]
[0.26812977]
[0.7178618 ]
[0.6175827 ]
[0.7722424 ]
[0.92830116]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24077603]
[0.26803178]
[0.71783763]
[0.61759686]
[0.77230227]
[0.92834574]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24064296]
[0.267934 ]
[0.71781343]
[0.61761117]
[0.77236205]
[0.9283902 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24051002]
[0.2678364 ]
[0.7177892 ]
[0.6176254 ]
[0.7724217 ]
[0.9284346 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2403773 ]
[0.26773894]
[0.71776474]
[0.6176397 ]
[0.7724813 ]
[0.9284789 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24024478]
[0.2676417 ]
[0.71774024]
[0.6176541 ]
[0.7725409 ]
[0.92852306]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.24011245]
[0.26754463]
[0.7177157 ]
[0.6176684 ]
[0.7726004 ]
[0.9285672 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23998028]
[0.26744783]
[0.7176911 ]
[0.6176828 ]
[0.7726599 ]
[0.9286113 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23984832]
[0.26735115]
[0.7176664 ]
[0.61769724]
[0.7727193 ]
[0.92865515]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23971656]
[0.2672546 ]
[0.71764153]
[0.61771166]
[0.7727787 ]
[0.92869896]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23958492]
[0.26715833]
[0.71761656]
[0.6177261 ]
[0.77283794]
[0.92874265]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23945355]
[0.26706225]
[0.7175915 ]
[0.6177406 ]
[0.77289724]
[0.9287863 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23932233]
[0.26696628]
[0.7175665 ]
[0.61775506]
[0.7729564 ]
[0.92882985]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2391913 ]
[0.26687056]
[0.7175413 ]
[0.61776966]
[0.77301556]
[0.92887324]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23906043]
[0.26677498]
[0.71751606]
[0.61778414]
[0.7730746 ]
[0.9289166 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23892978]
[0.26667958]
[0.71749073]
[0.6177988 ]
[0.77313364]
[0.92895985]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2387993 ]
[0.2665844 ]
[0.7174653 ]
[0.6178134 ]
[0.77319264]
[0.929003 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23866901]
[0.2664894 ]
[0.7174398 ]
[0.617828 ]
[0.7732516 ]
[0.9290461 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23853892]
[0.26639456]
[0.7174142 ]
[0.6178427 ]
[0.7733104 ]
[0.9290891 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23840898]
[0.26629996]
[0.7173885 ]
[0.6178574 ]
[0.77336925]
[0.9291319 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23827925]
[0.26620543]
[0.71736276]
[0.6178722 ]
[0.773428 ]
[0.9291747 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2381497 ]
[0.2661112 ]
[0.7173369 ]
[0.6178869 ]
[0.7734868 ]
[0.92921746]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23802036]
[0.26601714]
[0.717311 ]
[0.6179017 ]
[0.7735454 ]
[0.92925996]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23789114]
[0.26592326]
[0.717285 ]
[0.6179165 ]
[0.77360404]
[0.92930245]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23776215]
[0.26582947]
[0.71725893]
[0.6179313 ]
[0.77366257]
[0.929345 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23763332]
[0.26573595]
[0.7172327 ]
[0.61794615]
[0.773721 ]
[0.9293872 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23750466]
[0.26564255]
[0.7172064 ]
[0.61796105]
[0.77377945]
[0.92942953]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23737621]
[0.26554942]
[0.71718 ]
[0.61797595]
[0.77383786]
[0.9294717 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23724794]
[0.26545638]
[0.71715367]
[0.61799085]
[0.77389616]
[0.9295137 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23711982]
[0.26536354]
[0.71712714]
[0.6180059 ]
[0.7739545 ]
[0.9295557 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23699185]
[0.26527092]
[0.71710056]
[0.61802083]
[0.7740127 ]
[0.9295975 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23686418]
[0.26517844]
[0.7170739 ]
[0.61803585]
[0.77407086]
[0.92963934]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.2367366 ]
[0.2650861 ]
[0.7170471 ]
[0.61805093]
[0.77412903]
[0.92968106]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
hypothesis: [[0.23660925]
[0.26499403]
[0.7170203 ]
[0.61806595]
[0.7741871 ]
[0.9297226 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
1000 0.44170213
hypothesis: [[0.236482 ]
[0.2649021 ]
[0.71699333]
[0.61808103]
[0.7742451 ]
[0.9297641 ]]
predicted: [[0.]
[0.]
[1.]
[1.]
[1.]
[1.]]
accuracy: 0.8333333
In [17]:
# 실습
xy = np.loadtxt('./dataset/data-03-diabetes.csv', delimiter=','
, dtype=np.float32)
x = xy[:,0:-1]
y =xy[:,[-1]]
print(x.shape, y.shape)
(759, 8) (759, 1)
In [18]:
X = tf.placeholder(tf.float32, shape=[None, 8])
Y = tf.placeholder(tf.float32, shape=[None, 1])
W = tf.Variable(tf.random_normal([8,1]), name='weight')
b = tf.Variable(tf.random_normal([1]), name='bias')
hypothesis = tf.sigmoid(tf.matmul(X, W) + b)
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate = 0.01).minimize(cost)
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.cast(tf.equal(predicted, Y), dtype=tf.float32)
In [22]:
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
feed = {X:x, Y:y}
for step in range(1001):
sess.run(train, feed_dict = feed)
if step % 200 == 0:
print(step, sess.run(cost, feed_dict=feed))
h, c, a = sess.run([hypothesis, predicted, accuracy], feed_dict=feed)
hca = [h, c, a]
0 1.0444983
200 0.780901
400 0.72328484
600 0.69887966
800 0.6810927
1000 0.6654639
In [ ]:
'AI > Deep Learning' 카테고리의 다른 글
딥러닝: 03. 다중 선형 회귀(Multi Variable linear regression) (0) | 2019.07.30 |
---|---|
딥러닝: 02. 경사하강법(Gradient descent algorithm) (0) | 2019.07.30 |
딥러닝 : 01. Tensorflow의 정의 (0) | 2019.07.26 |
딥러닝 : 로지스틱 회귀 코딩 (0) | 2019.07.25 |
titanic : Machine Learning from Disaster - kaggle 연습 (0) | 2019.07.23 |
댓글